AutoGluon:原理、架构与应用场景
一、引言
在当今快速发展的机器学习领域,自动化机器学习(AutoML)逐渐成为研究热点。AutoGluon 是一款开源的自动机器学习框架,旨在帮助用户更轻松地构建和优化机器学习模型,尤其适合初学者和希望快速迭代模型的开发者。它通过自动化的特征工程、模型选择、超参数调优等流程,极大地简化了机器学习的复杂性,同时也能为专家提供强大的工具来提升现有模型和数据管道的性能。
二、AutoGluon 的原理
(一)自动化特征工程
AutoGluon 会自动对输入数据进行特征分析和处理。它能够识别数据中的缺失值、异常值,并进行填充和修正。同时,它会根据数据类型...