分类目录归档:个人成长

【置顶】2025-AICDA-文章一览表


  • 支持向量机-SVM 1
  • 知识蒸馏 1
  • 建模
  • 特征提取
  • 特征工程 1
  • 特征归一化
  • softmax 1
  • 时间序列预测模型 1
  • FinGPT 1
  • FinML
  • ChatGPT
  • LLM
  • GPT 1
  • LSTM
  • Transformer 1
  • 梯度下降 1
  • 特征工程 1
  • 神经网络 1
  • AI原理系列-强化学习 1
  • AI原理系列-无监督学习 1
  • AI原理系列-监督学习 1
  • MoE架构的解析 1
  • GPU 消费级与专业级性价比分析报告
  • 算力集群的自建与租赁方案对比分析报告
  • 训练一个1B的金融大模型需要花多少钱? 1
  • AlphaNet 1
  • 卷积神经网络
  • 循环神经网络
  • Bert
  • AlphaNet
  • Vnp...

Read more

Embedding 原理概述


Embedding 原理概述

Embedding(嵌入)是机器学习和人工智能领域的核心概念,本质是将高维、离散、稀疏的数据(如文字、图片、音频、用户、商品等)转换为低维、连续、稠密的实数向量表示的过程。这些向量被称为嵌入向量(Embedding Vector),其神奇之处在于能在向量空间中捕获并保留原始数据的语义、关系或特征。

为何需要 Embedding?

  1. 维数灾难与稀疏性: 像“词袋模型”这类方法,每个词用一个维度表示,词典庞大时向量维度极高且极度稀疏(大部分元素为0),计算效率低,难以捕捉语义。
  2. 语义鸿沟: 离散符号本身无法直接表达“相似性”(如“猫”和“狗”都比“汽车”更接近“...

Read more

Agentic AI 如何构建更好的解决方案?


利用智能体人工智能(Agentic AI)与多大型语言模型(LLMs)创建更智能解决方案的解读报告

一、引言

在人工智能技术飞速发展的当下,大型语言模型(Large Language Models,简称LLMs )已成为推动各领域创新的关键力量。而智能体人工智能(Agentic AI)概念的出现,进一步拓展了LLMs的应用边界,为构建更智能、更具协同性的解决方案提供了新路径。本次报告聚焦于“Using Agentic AI to create smarter solutions with multiple LLMs (step - by - step process)”这一主题,通过对相...

Read more

集成学习实战-Books


集成学习基础知识

集成方法:集体智慧

关注集成学习原因

单个模型中的拟合度与复杂性

第一个集成模型

集成方法的术语和分类

基本集成方法

同质并行集成:Bagging法和随机森林

并行集成

Bagging: Boostrap结合算法

随机森林

更多同质并行集成

案例研究: 乳腺癌诊断

异构并行集成:结合强学习器

异质集成的基础估计器

通过加权结合预测

通过元学习结合预测

案例研究:情感分析

顺序集成: 自适应提升

弱学习器的顺序集成

AdaBoost: 自适应提升

AdaBoost在实践中的应用

案例研究: 手写数字分类

LogitBoost:使用逻辑损失进行提升

顺序继承...

Read more

智能体(Agents)的“智能体化”程度探究


智能体(Agents)的“智能体化”程度探究:现状、挑战与未来方向

一、幻灯片内容解析

(一)核心问题:How agentic are our agents?(我们的智能体有多“智能体化”? )

这一问题聚焦于当下智能体(agents)在自主性、功能实现等维度,与理想中具备高度智能体特质(如自主决策、长期任务执行等)的契合度探究,是理解智能体发展现状与瓶颈的关键切入点。

(二)具体要点展开

  1. Many agents are pipelines(许多智能体是管道式结构 )

◦ Low degree of autonomy(低自主性 ):这类智能体多遵循预设的、线性的流程运行,像工厂流水线...

Read more

RLVR概述


以下是 RLVR(Reinforcement Learning with Verifiable Rewards,可验证奖励强化学习)的技术概述,综合其核心机制、应用场景、争议及最新进展:


一、技术原理与核心机制

  1. 基本框架
    RLVR 是一种针对大模型推理任务的强化学习方法,其核心思想是利用可自动验证的奖励信号(如数学答案的正确性、代码的测试通过率)替代人工标注,驱动模型优化。训练过程包含:
  2. 策略模型:生成候选答案及推理过程。
  3. 奖励函数:基于验证结果(如答案匹配或测试通过)给出 0/1 奖励,并结合格式规范性(如是否包含 \boxed{})设计复合奖励。

  4. 关键算法

  5. GR...

Read more

何时构建智能体?-v1


构建智能代理的决策智慧:何时该踏上智能代理构建之旅

一、引言

在人工智能技术浪潮席卷各行业的当下,智能代理(Agents)作为能自主执行任务、具备决策与交互能力的程序系统,逐渐成为企业与开发者优化流程、提升效率的重要工具。然而,并非所有任务场景都适合构建智能代理,盲目投入不仅会造成资源浪费,还可能因适配性不佳导致项目失败。Anthropic公司Barry Zhang提出的 “是否该打造智能代理” 检查清单,为我们提供了清晰的决策框架,从任务复杂度、价值、可行性和错误成本等维度,指引我们探寻何时该构建智能代理,让技术应用精准落地。

二、任务复杂度:智能代理的 “入场券”

(一)低复杂度任务...

Read more

何时构建智能体?-V2


构建智能代理的决策智慧:何时踏上智能代理构建之旅

一、引言

在人工智能重塑各行业的浪潮中,智能代理(Agents)——能够自主执行任务、具备决策与交互能力的程序系统——正日益成为企业和开发者优化流程、提升效率的关键工具。然而,并非所有场景都适合构建智能代理,盲目投入不仅浪费资源,更可能因适配性不佳导致项目失败。借鉴Anthropic公司Barry Zhang提出的“是否该打造智能代理”检查清单,我们可以从任务复杂度、价值、可行性和错误成本四个核心维度出发,建立清晰的决策框架,精准判断构建智能代理的恰当时机,确保技术应用有效落地。

二、任务复杂度:智能代理的“入场券”

  • (一)低复杂度任务...

Read more

动量策略-利用Python构建关键交易模型


关于本书

系统交易

交易方法验证

科学方法

方法的一致性

时间管理

开发交易模型

模型的目标

规则和变化

处理数据

资产类型

投资范围

资产配置和风险级别

进场规则和立场规则

再平衡

金融风险

量化风险

逐日盯市

常见的风险谬论

以风险为代价取得回报

Python 介绍

Pandas 程序库介绍

交易策略回测

回测结果分析

交易所交易基金

构建ETF模型

股票

系统动量策略

期货

期货建模及回测

期货趋势跟随交易

时间回报趋势跟随模型

反趋势交易

曲线交易

比较和组合模型

回测表现可视化与模型组合

你不可能一直是赢家

测量相对表现

导入数据

数据和数据库

结束语-前进的路径

Read more