一级分类 | 二级分类 | 项目名 | 简介 | 地址 |
---|---|---|---|---|
AI | 智能体框架 | LangChain | ||
AI-开发框架 | 多智能体协作框架 | AutoGen | ||
AI | LLM(大语言模型)应用开发平台 | BiSheng | ||
AI | 多智能体框架 | MetaGPT | ||
AI | 开源大模型 | DeepSeek | ||
AI | 金融大模型 | FinRobot | ||
AI | FinGPT | |||
AI | FinNLP | |||
量化 | 量化交易平台 | vnpy | 基于Python的开源量化交易平台开发框架 | github |
量化 | 量化交易框架 | AlphaPy | ||
AI量化 | 知识库 | quant-wiki | ... |
分类目录归档:解决方案
【置顶】ALL-需求列表-V0.0.1
我将使用Markdown的语法为你生成四列10行的表格,表头为你指定的内容。
类别 | 需求名称 | 需求描述 | 备注 |
---|---|---|---|
登录需求 | 人脸识别 | web 登录界面通过人脸识别自动登录 | 无 |
量化交易策略 | 交易策略 | 选股策略 | 重要-2025-01-10 |
咨询平台 | 需求3 | 对需求3的具体描述 | 需尽快处理 |
教育平台 | 需求4 | 对需求4的具体描述 | 需测试 |
数据平台 | 需求5 | 对需求5的具体描述 | 等待反馈 |
智能运维 | 需求6 | 对需求6的具体描述 | 已沟通 |
理财平台 | 需求7 | 对需求7的具体描述 | 需调整 |
类别4 | 需求8 | 对需求8的具体描述 | 可优化 |
类别5 | 需求9 | 对需求9的具体描述... |
【置顶】stackStorm架构图
【置顶】FinRobot-架构图
【置顶】StackStorm-开源的自动化平台
- 定义与概述
-
StackStorm是一个开源的自动化平台,用于事件驱动的自动化操作。它能够将各种系统、工具和服务集成在一起,通过自动化流程来响应事件,从而提高系统的运维效率、可靠性和敏捷性。例如,在一个复杂的云计算环境中,当监测到某个虚拟机的CPU使用率过高时,StackStorm可以自动触发一系列操作,如扩展虚拟机资源或者迁移虚拟机到其他主机。
-
核心组件与架构
- 传感器(Sensors):这是StackStorm的输入部分,用于检测事件。传感器可以监控各种来源的事件,如系统日志、消息队列、网络设备的SNMP陷阱等。例如,一个文件系统传感器可以监控文件系统的变化,如文件的创建、修改...
【置顶】FinRobot-金融应用的开源 AI 智能体平台
FinRobot 是一个人工智能代理平台,它超越了 FinGPT 的范畴,是为金融应用精心设计的全面解决方案。它集成了多种多样的人工智能技术,不仅仅局限于语言模型。这种广阔的视野凸显了该平台的多功能性和适应性,能够满足金融行业多方面的需求。
FinRobot 是一个专注于金融应用的开源 AI 智能体平台,由 AI4Finance 基金会开发。它通过结合大语言模型(如 GPT-4)和多种金融工具,提供一系列功能,主要用于股票分析、市场预测、财务报表解读和报告生成。以下是一些核心特点和功能:
核心功能:
- 市场预测代理:输入公司代码、财务数据和新闻,预测股价走势并提供简要分析。
- 财务分析师代...
VNPY-源码分析-开源量化系统-数据采集与处理的完整流程-0301004
vn.py 数据采集与处理的完整流程如下,涵盖了从行情数据的获取、存储、分发到最终被策略或其他模块使用的全过程。具体实现机制如下:
1. 数据采集的实现机制
(1)gateway模块采集数据
- 每个市场(如CTP、IB、Futu等)有对应的 gateway 适配器(如
vnpy/gateway/ctp/ctp_gateway.py
)。 - gateway 负责:
- 连接行情服务器(API登录)
- 用户/策略通过界面或代码发出合约订阅请求(subscribe)
- 接收来自服务器的实时行情推送(如Tick、K线等)
- 将原始API数据转换为vn.py统一的数据结构(如TickData、BarData)...
VNPY-源码分析-开源量化系统-获取行情数据的实现-0301003
在 vn.py 框架中,行情数据的获取是通过“gateway(接口适配器)”模块完成的。其流程和机制如下:
1. gateway模块作用
gateway模块对接各类交易所、券商的行情API(如CTP、IB、Futu等),负责: - 连接行情服务器 - 订阅指定合约的行情 - 接收并解析Tick、K线等实时行情数据 - 将原始API数据转换为vn.py统一的数据结构(如TickData、BarData)
2. 获取行情数据的主要流程
-
配置并加载gateway模块
用户在vn.py客户端界面或配置文件中选择、配置所需的行情接口(如CTP、IB等),输入服务器、账号、密码等信息。...
VNPY-源码分析-开源量化系统-数据源处理部分-0301002
vn.py 框架在“数据源处理”部分承担着行情数据采集、存储、管理与分发的关键角色,为量化策略开发和回测提供坚实的数据基础。以下详细介绍其数据源处理部分的功能与典型实现:
1. 数据源处理的主要功能
(1)数据采集
- 支持对接多种行情接口(如CTP、IB、Futu等),可接收Tick、K线、委托单、成交单等多维度原始数据。
- 通过gateway层实现对不同市场、交易所的数据抽象与统一,屏蔽底层API差异。
(2)数据存储与管理
- 内置数据库适配器,可将行情数据存储到多种数据库(SQLite、MySQL、PostgreSQL等)。
- 支持Tick、分钟K线、日线等不同粒度的数据存储与检索。...
VNPY-源码分析-开源量化系统-0301001
该仓库是 VeighNa(维纳),一个基于Python的开源量化交易系统开发框架,目标是为量化交易员和金融机构提供“由交易员开发,为交易员服务”的多功能量化交易平台。以下是核心信息总结:
项目定位
VeighNa自发布以来积累了大量金融领域用户(如私募基金、证券公司、期货公司等),支持二次开发(策略、模块等),并提供完善的文档和社区支持。其4.0版本新增AI量化模块(vnpy.alpha
),定位为AI驱动的量化交易平台。
核心功能与模块
1. AI量化模块(vnpy.alpha)
4.0版本重点新增,提供一站式多因子机器学习策略开发、投研和实盘交易解决方案,包含以下子模块: - da...