分类目录归档:强化学习

动作价值函数


以下是关于动作价值函数(Action-Value Function)的详细中文解析:


核心定义

动作价值函数,通常表示为 ( Q(s, a) ),是强化学习(Reinforcement Learning, RL)的核心概念之一。它用于评估智能体(agent)在状态 ( s ) 下选择动作 ( a ) 后,遵循某个策略 ( \pi ) 所能获得的期望累积奖励。其数学定义为: [ Q^\pi(s, a) = \mathbb{E}\pi \left[ \sum^\infty \gamma^t r_{t+1} \mid s_0 = s, a_0 = a \right] ] 其中: - ( \g...

Read more

值函数近似-VFA


值函数近似(VFA)在强化学习中的应用与原理

1. 动机与背景
在传统强化学习(如Q-learning)中,状态和动作空间较小时,可通过表格(如Q表)直接存储每个状态的值。但当状态空间庞大(如围棋)或连续(如机器人控制)时,表格方法因存储和计算成本过高而失效。
值函数近似(VFA)通过参数化函数(如线性模型、神经网络)泛化值估计,使算法能处理高维或连续状态。


2. 核心方法
2.1 函数选择
- 线性模型
值函数表示为 ( V(s) = \theta^T \phi(s) ),其中 (\phi(s)) 是人工设计的特征向量(如位置、速度),(\theta) 是权重参数。
优点:计算...

Read more

蒙特卡洛方法-V0


蒙特卡洛方法(Monte Carlo Method)是一种基于随机采样和统计规律的数值计算方法,其核心是通过生成大量随机样本,利用概率统计规律来近似求解复杂数学问题。以下是其核心原理的详细解析:


1. 核心思想

蒙特卡洛方法的本质是“用随机性解决确定性问题”,通过以下步骤实现: 1. 将问题转化为概率模型:将待求解的问题(如积分、优化、概率分布等)映射到一个可通过随机实验模拟的统计模型。 2. 生成大量随机样本:通过随机数生成器或采样技术,模拟问题的可能状态或路径。 3. 统计结果逼近真实解:利用大数定律(Law of Large Numbers)和中心极限定理(Central Lim...

Read more

最佳决策路径-MDP


MDP(马尔科夫决策过程,Markov Decision Process)是用来建模决策过程的数学框架。最佳决策顺序通常指的是在给定的MDP环境中,如何选择一系列动作以最大化长期的回报。MDP主要由以下几个元素组成:

  1. 状态空间 (S):所有可能的状态集合。
  2. 动作空间 (A):所有可能的动作集合。
  3. 状态转移概率 (P):在某个状态下,采取某个动作后转移到另一个状态的概率。
  4. 奖励函数 (R):在某个状态下采取某个动作所获得的奖励。
  5. 折扣因子 (γ):用来权衡即时奖励与未来奖励的因子。

最佳决策顺序的目标是确定一个策略(policy),即在每个状态下选择的动作序列,以最大化从当前状态到终止...

Read more

一文搞懂强化学习:原理、算法与应用- V1


一、从生活实例理解强化学习

想象一下,你养了一只可爱的小狗,你希望它学会 “坐下” 这个指令。最开始,小狗对这个指令毫无概念,它可能在你发出指令后四处乱跑、玩耍。但当它偶然间坐下时,你立即给予它美味的零食作为奖励,同时给予它热情的夸赞,比如 “你真棒”。在这个场景里,小狗就是智能体,它所处的周围环境,包括你、房间等,构成了环境。小狗原本随意的状态,在听到指令后转变为坐下,这就是状态的变化。小狗做出坐下的动作,就是一次决策行动。而你给予的零食和夸赞,则是环境给予小狗的奖励。

随着你不断重复这个过程,小狗逐渐明白了 “坐下” 这个动作与获得奖励之间的关联。它开始主动在听到指令时坐下,因为它知...

Read more

强化学习概述-V0


强化学习(Reinforcement Learning, RL)是机器学习的一个分支,其核心思想是通过智能体(Agent)与环境(Environment)的交互,学习如何采取最优行动以最大化长期累积奖励。以下是其核心原理的概述:


一、核心要素

  1. 智能体(Agent):学习并做出决策的主体。
  2. 环境(Environment):智能体交互的对象,提供状态和反馈。
  3. 状态(State):环境在某一时刻的描述,记为 ( s )。
  4. 动作(Action):智能体在某一状态下采取的行为,记为 ( a )。
  5. 奖励(Reward):环境对智能体动作的即时反馈,记为 ( r )。
  6. 策略(Policy):智能体...

Read more

GAWM-


GAWM (Global-Aware World Model) 是一种基于模型的多智能体强化学习(Model-based Multi-Agent Reinforcement Learning, MARL)方法,旨在解决复杂多智能体环境中的全局状态表示和样本效率问题。以下是关于 GAWM 的详细介绍:


1. 背景与挑战

在多智能体强化学习中,模型驱动的方法(Model-based MARL)通过构建环境动态模型来生成伪数据样本,从而提高样本效率。然而,现有的方法在全局状态表示上存在不足,尤其是在部分可观测环境中,无法保证数据样本的全局一致性。这导致生成的伪数据样本与真实样本之间存在分布不...

Read more

多智能体强化学习-MARL


多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)是强化学习(Reinforcement Learning, RL)的一个分支,专注于多个智能体在共享环境中通过交互学习策略。与单智能体强化学习不同,MARL 需要考虑智能体之间的合作、竞争或混合关系,这使得问题更加复杂。

1. MARL 的核心问题

MARL 的核心挑战在于如何处理智能体之间的交互和环境的动态变化。以下是 MARL 中的一些关键问题:

  • 非平稳性(Non-stationarity):在单智能体 RL 中,环境通常是平稳的(即环境动态不随时间变化)。但在 MARL 中,其他...

Read more

人类反馈强化学习-RLHF


人类反馈强化学习(Reinforcement Learning from Human Feedback,RLHF)是一种将人类反馈融入强化学习过程的技术,它在提升人工智能系统的性能和行为方式上发挥着关键作用。

一、基本原理

  1. 强化学习基础
  2. 强化学习是机器学习中的一个领域,其中智能体(agent)在环境(environment)中采取一系列行动(action),目的是最大化累积奖励(reward)。智能体根据环境反馈的奖励信号来学习最优策略(policy),即决定在什么状态下采取什么行动。
  3. 例如,在训练一个机器人走迷宫的场景中,机器人(智能体)在迷宫(环境)中移动(行动),当它成功走出迷宫...

Read more