分类目录归档:FinGPT

FinGPT-功能架构


FinGPT 是针对金融领域优化的生成式预训练模型(如基于 GPT 架构),其功能架构通常围绕数据获取、处理、模型训练和应用场景展开,同时需兼顾金融领域的特殊性(如实时性、可解释性、合规性等)。以下是其典型功能架构分层解析:


1. 数据层(Data Layer)

金融领域的多样性和动态性要求数据源覆盖广且更新频繁:

  • 数据来源
  • 结构化数据:市场行情(股价、交易量)、财务报表、经济指标(GDP、CPI)、历史交易数据等。
  • 非结构化数据:金融新闻、分析师报告、社交媒体舆情(如Reddit、Twitter)、政策文件、财报电话会议记录等。
  • 另类数据:卫星图像(如监测物流)、信用卡交易数据等...

Read more

FinGPT Framework-概述


  1. 整体架构概述

  2. FinGPT Framework是一个为金融领域的自然语言处理任务设计的综合框架。它建立在Transformer架构基础之上,以适应金融文本的特点。该框架主要包括数据处理模块、预训练模块、微调模块以及评估模块等几个重要部分。

  3. 这些模块相互协作,从原始金融数据的收集和预处理,到模型的预训练和针对具体任务的微调,再到模型性能的评估,形成了一个完整的流程,以构建和优化适用于金融应用的语言模型。

  4. 数据处理模块

  5. 数据收集

    • 收集各种金融文本来源,如财经新闻、公司报告、金融研究论文、监管文件等。例如,它会从路透社、彭博社等新闻机构获取实时财经新闻,这些新闻包含了股...

Read more