分类目录归档:时间序列预测

TimesFM-时间序列预测-03001


以下是关于谷歌时间序列预测基础模型 TimesFM 的详细介绍,基于搜索结果的综合分析:


1. 模型概述

TimesFM 是谷歌研发的专为时间序列预测设计的 仅解码器(decoder-only)基础模型,参数规模为 2亿(200M),在包含 1000亿个真实世界时间点 的多样化数据集上预训练而成。其核心目标是通过大规模预训练实现 零样本(zero-shot)预测,即在无需微调的情况下直接应用于新任务,性能媲美甚至超越传统监督学习方法。


2. 核心架构与创新

架构设计

  • 分块(Patch)处理:将时间序列分割为连续的非重叠块(如32个时间点为一个输入块),每个块通过残差块转换为向量,并...

Read more