分类目录归档:产品研发

数据分析-常见任务


数据分析涵盖了从数据收集到结果解读及应用的一系列过程,以下是一些常见任务:

数据收集与整理

  • 确定数据源:明确所需数据的来源,如企业内部数据库、外部公开数据集、网络爬虫获取的数据、传感器收集的数据等。
  • 数据提取:使用相应的工具和技术从各种数据源中获取数据,如通过SQL语句从关系型数据库中查询数据,或利用API接口获取第三方平台数据。
  • 数据清洗:处理数据中的缺失值、重复值、异常值等问题,确保数据的质量和一致性。例如,对于缺失值可采用填充均值、中位数或基于相似样本进行插补等方法。
  • 数据转换:对数据进行标准化、归一化等转换操作,使其符合分析要求。如将不同量级的数据进行归一化处理,以便于进行比较...

Read more

数据分析师-


数据分析师是指专门从事数据分析工作的专业人员,他们通过收集、处理、分析和解释数据,为企业或组织提供有价值的信息和决策支持,以下是关于数据分析师的详细介绍:

工作内容

  • 数据收集与整理:从各种数据源(如数据库、文件系统、网络爬虫等)收集相关数据,并进行清洗、转换和整合,确保数据的准确性和一致性。这可能包括处理缺失值、异常值,对数据进行标准化等操作。
  • 数据分析与建模:运用统计学、数学和机器学习等方法,对整理好的数据进行深入分析,以发现数据中的模式、趋势和关系。构建数据模型,如预测模型、分类模型等,用于解决特定的业务问题,如销售额预测、客户分类等。
  • 数据可视化与报告:将分析结果以直观的图表、图...

Read more

什么是数据分析?


数据分析是指通过检查、清理、转换和建模数据,以发现有用的信息、得出结论并支持决策的过程。它涉及使用各种技术和工具来揭示数据中的模式、趋势和关系,从而为商业战略提供指导、改进流程和优化结果。

数据分析通常包括以下几种类型:

  1. 描述性分析:主要通过总结历史数据来理解过去发生了什么,回答“发生了什么?”的问题。

  2. 诊断性分析:探讨某一事件发生的原因,分析模式或相关性,回答“为什么会发生?”的问题。

  3. 预测性分析:利用历史数据和统计算法预测未来的结果或趋势,回答“可能会发生什么?”的问题。

  4. 规范性分析:基于数据分析提供推荐,帮助决策者选择最佳行动方案,回答“我们应该做什么?”的问题。

    ...

Read more

验证备份数据的有效性


验证备份数据的有效性是确保数据在需要恢复时能够正常使用的关键步骤。以下是一些可以用来验证备份数据有效性的方法:

一、数据完整性检查

  1. 哈希值验证
  2. 哈希函数(如MD5、SHA - 1、SHA - 256等)可以为数据生成唯一的哈希值。在备份数据之前,计算原始数据的哈希值并记录下来。当需要验证备份数据时,重新计算备份数据的哈希值,然后与原始记录的哈希值进行比较。如果两个哈希值相同,那么在很大程度上可以确定备份数据与原始数据是一致的。例如,对于一个重要的文件备份,在备份时计算其SHA - 256哈希值为“abcdef1234567890”,在验证时,重新计算备份文件的哈希值,若也是“abcde...

Read more

DevOps流程规范体系:构建高效的软件交付生态


DevOps流程规范体系:构建高效的软件交付生态

摘要: 本文深入探讨 DevOps 流程规范体系,涵盖研发协作流程、DevOps 工具能力体系以及运营服务体系等核心方面。详细阐述各环节的规范要求、关键作用及相互关系,旨在为企业构建完善的 DevOps 流程规范提供全面的指导,以实现高效、可靠、安全的软件交付与运营。

一、引言

在当今数字化时代,软件的快速迭代与高质量交付成为企业竞争的关键因素。DevOps 作为一种融合开发与运维的理念与实践方法,通过打破部门壁垒、优化流程和整合工具,实现了从代码编写到应用部署及运营的全生命周期管理。建立一套科学合理的 DevOps 流程规范体系对于企业...

Read more

全局解释锁-Python


Python中的全局解释锁(Global Interpreter Lock,简称GIL)是Python解释器用于同步线程执行的一种机制,以下是对它的详细介绍:

基本概念

  • 定义:GIL是Python解释器设计时引入的一个互斥锁,它确保在同一时刻只有一个线程在执行Python字节码。这意味着,即使在多线程编程的情况下,同一时间也只有一个线程能够访问Python对象和执行Python代码。
  • 作用:主要是为了方便对Python对象的管理和内存的安全访问。由于Python中的对象是引用计数来进行内存管理的,在多线程环境下,如果多个线程同时对对象进行操作,可能会导致引用计数的错误,进而引发内存管理...

Read more

网络管理-运维系统架构-


这张图片展示了一个网络管理与运维系统的架构。

整体架构

  1. 综合管控
  2. 包括故障自愈、自动巡检、设备控制、自动运维、运维编排、周期调度等功能。这些功能主要用于对网络设备进行自动化的管理和维护,确保网络的稳定运行。
  3. 态势展示
  4. 包括故障统计、日志分析、性能对比、统计报表、数据大屏、运维驾驶舱等功能。这些功能主要用于对网络运行状态进行可视化展示,帮助运维人员快速了解网络性能和故障情况。
  5. 高级管理
  6. 包括流量分析、业务分析、资产管理、工单管理等功能。这些功能主要用于对网络流量、业务运行情况进行分析,以及对网络资产进行管理和运维工单的处理。
  7. 基础监管
  8. 包括自动发现、网络拓扑、故障监控、性能检测、事件管理...

Read more

Faiss Index-高效相似性搜索和密集向量聚类的库


Faiss 是 Facebook AI Research 开发的一款用于高效相似性搜索和密集向量聚类的库。它主要特点包括:能处理大规模数据集的向量索引与检索,支持多种距离度量方式(如欧式距离、内积等),提供不同索引结构以平衡搜索速度与内存占用,被广泛应用于图像识别、自然语言处理等人工智能领域,加速诸如特征匹配、近邻搜索等任务,助力开发者优化模型性能、提升检索效率,以更高效地处理高维向量数据的相似性搜索需求。

文档

github

...

Read more