分类目录归档:人工智能

玻尔兹曼机概述


探秘玻尔兹曼机:解锁人工智能的“能量密码”

从统计物理到 AI:玻尔兹曼机的诞生

在科学的广袤版图中,不同学科之间常常存在着奇妙的联系,就像隐藏在宇宙深处的暗线,将看似分离的知识领域悄然连接。统计物理学与人工智能领域的交融,便是这样一段引人入胜的故事,而玻尔兹曼机,正是这段故事中一颗璀璨的明珠。

统计物理学,作为物理学的一个重要分支,主要研究大量微观粒子组成的宏观系统的性质和行为。在这个领域中,玻尔兹曼分布占据着举足轻重的地位。它描述了处于热平衡状态下,粒子在不同能量状态下的概率分布情况,其核心思想在于,系统更倾向于处于能量较低的状态,且温度对粒子的分布有着关键影响。简单来说,就如同在一...

Read more

知识图谱-


知识图谱(Knowledge Graph)是一种结构化的语义网络,用于表示实体(如人、事、物、概念等)及其之间的复杂关系,以图形化形式组织和呈现知识,支持高效的知识存储、查询和推理。以下是其核心内容和应用的详细解析:

一、核心概念

  1. 组成要素
  2. 实体:现实中的客观对象(如“西安”“秦始皇陵”)。
  3. 属性:实体的特征(如“西安”的属性:中国城市、人口1295万)。
  4. 关系:实体间的关联(如“西安”与“陕西”的关系:隶属省份)。
  5. 三元组:知识表示的基本单位(实体1-关系-实体2 或 实体-属性-值),例如(秦始皇陵,位于,西安)。

  6. 技术本质
    融合人工智能(AI)、自然语...

Read more

机器学习超参数:从理论到实践的核心探索



机器学习超参数:从理论到实践的核心探索

一、引言

在构建机器学习模型的过程中,数据、算法与超参数如同“铁三角”,共同决定了模型的最终性能。其中,超参数调优往往是最容易被低估却至关重要的环节。一个优秀的模型架构可能因不当的超参数选择而表现平庸,而简单的算法搭配精细调参却可能实现惊人效果。本文将从基础概念切入,系统解析超参数的优化方法论、实用技巧及前沿趋势,为从业者提供一份兼顾理论与实践的调参指南。


二、超参数基础概念

1. 定义与作用

超参数(Hyperparameters)是模型训练前预设的配置参数,与模型通过数据自动学习的参数(如线性回归的权重)有本质区别。例如,在训练神经网络时,...

Read more

Cot概述


CoT:开启人工智能推理新时代

从 “黑箱” 到透明:CoT 是什么

在人工智能飞速发展的当下,大语言模型(LLM)已成为自然语言处理领域的核心力量。它们能够生成流畅的文本、回答复杂的问题,甚至进行创造性写作,展现出令人惊叹的语言能力。然而,传统大语言模型在处理问题时,就像一个神秘的 “黑箱”。以 GPT-3 为例,当你向它提出一个问题,它会迅速给出答案,但却无法清晰展示得出这个答案的具体思考过程。这种缺乏透明度的决策机制,使得用户难以理解答案的来源和可靠性,也限制了模型在一些对推理过程要求严格的领域中的应用。

直到 2022 年,谷歌研究人员在《Chain-of-Thought Pro...

Read more

Cot思维链:人工智能推理能力的革命性突破


Cot思维链:人工智能推理能力的革命性突破

近年来,随着大语言模型(LLM)的快速发展,人工智能在文本生成、问答系统等任务中展现出惊人的能力。然而,模型如何得出答案的"黑箱"特性始终是制约其可信度的关键瓶颈。2022年,Google研究人员在《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》论文中提出的思维链(Chain-of-Thought, CoT)技术,通过让AI展示完整的推理步骤,不仅显著提升了复杂问题的解决能力,更打开了理解机器认知过程的窗口。这项技术正在重塑人机协作的范式,成为AI可解...

Read more

动作价值函数


以下是关于动作价值函数(Action-Value Function)的详细中文解析:


核心定义

动作价值函数,通常表示为 ( Q(s, a) ),是强化学习(Reinforcement Learning, RL)的核心概念之一。它用于评估智能体(agent)在状态 ( s ) 下选择动作 ( a ) 后,遵循某个策略 ( \pi ) 所能获得的期望累积奖励。其数学定义为: [ Q^\pi(s, a) = \mathbb{E}\pi \left[ \sum^\infty \gamma^t r_{t+1} \mid s_0 = s, a_0 = a \right] ] 其中: - ( \g...

Read more

思知机器人-知识图谱


思知机器人(https://www.ownthink.com/)

1. 网站定位

  • 核心领域:人工智能(AI)、认知智能、知识图谱、对话机器人。
  • 目标:成为全球领先的“AI认知智能大脑服务商”,致力于构建最强认知大脑。

2. 核心技术

  • 自然语言处理(NLP)
  • 中文分词、词性标注、命名实体识别、文本纠错、关键词抽取、文章分类、新闻摘要、情感分析、实体情感分析、语义相似度计算。
  • 语音技术
  • 语音识别(ASR)、语音合成(TTS)。
  • 图像技术
  • 网站审核(图像内容分析)。
  • 知识图谱
  • 万亿级实时图数据存储技术,支持知识构建、分析与推理。

3. 核心产品与服务

  • 知识图谱平台
  • 提供一站...

Read more

多智能体框架-视频文字


多智能体框架(Multi-Agent Framework)是支持多个智能体(Agent)协同工作、交互和决策的系统架构,广泛应用于分布式人工智能、机器人协作、自动驾驶、游戏AI、供应链优化等领域。以下是多智能体框架的核心概念、关键组成和典型应用方向:


1. 多智能体框架的核心概念

  • 智能体(Agent):具有自主决策能力的实体,能感知环境、处理信息并采取行动。
  • 协作与竞争:智能体之间可能合作完成共同目标,也可能因资源竞争而产生博弈。
  • 去中心化:无需全局控制中心,智能体通过本地规则或通信实现系统级目标。
  • 环境动态性:智能体需适应环境变化(如其他智能体的行为、外部事件等)。

2. 多智...

Read more

妙想金融大模型-LLM


东方财富自主研发的妙想金融大模型,涵盖模型特性、能力、应用场景、技术支撑以及下载途径等内容,旨在为用户提供智能投研与投资服务。

  1. 模型概述:妙想金融大模型是国内首个基于金融大模型的智能应用,备案号为Shanghai - Miaoxiang - 20231207。它依托东方财富平台优势,具有“懂金融、懂用户、强数据”的基因。
  2. 核心优势

    • 数据全面:构建金融全品类、高品质数据流,覆盖各类业务场景,包含数百万金融指标,查询高效精准。
    • 专业性强:基于海量高质量金融语料,在实际业务场景迭代训练,具备专业金融理解能力。
    • 架构先进:凭借数千张卡的算力,支持低延迟、高效率、可扩展、兼容的超千亿参数多模...

Read more

向量数据库概述-视频文字


向量数据库概述

向量数据库是一种专门用于存储、管理和高效检索高维向量数据的数据库系统。与传统数据库基于精确匹配的查询不同,向量数据库通过计算向量之间的相似性(如余弦相似度、欧氏距离等)实现近似搜索,尤其擅长处理图像、文本、音频等非结构化数据转化而来的高维向量。其核心价值在于解决人工智能和大数据场景下海量高维数据的实时检索需求,广泛应用于推荐系统、图像搜索、自然语言处理等领域。


核心原理

1. 向量空间模型

向量数据库基于向量空间模型(VSM),将数据映射为高维空间中的点。例如,文本可通过词嵌入(如Word2Vec、BERT)转化为向量,图像通过CNN提取特征向量。相似性通过向量间的距离...

Read more