Across-task training 是一种机器学习训练范式,旨在通过在多任务或多领域数据上进行训练,提升模型的泛化能力和适应性。与传统的单任务训练不同,across-task training 强调模型在多个相关或不相关任务之间的知识共享和迁移,从而提高模型在新任务或新环境中的表现。
以下是关于 across-task training 的详细解析:
1. 核心思想
- 多任务学习(Multi-Task Learning, MTL):在多个任务上同时训练模型,共享部分参数,使模型能够学习到通用的特征表示。
- 迁移学习(Transfer Learning):在一个任务上训练模型,然后将...