分类目录归档:产品研发

数据剖析


Data Profiling(数据剖析)是对数据进行详细分析和总结的过程,目的是理解数据的结构、内容、质量、完整性和模式。数据剖析是数据质量管理的一个重要步骤,通常用于在数据清洗、数据集成、数据迁移或数据分析之前,发现数据中的潜在问题、异常值或不一致性。

数据剖析的关键目标:

  1. 数据质量评估
  2. 通过分析数据,评估数据的准确性、完整性、一致性和有效性,识别数据质量问题(如缺失值、重复值、格式错误等)。

  3. 理解数据结构

  4. 通过剖析数据,理解数据的类型、范围、分布和统计特性,帮助分析人员更好地了解数据的基本特性。

  5. 发现数据异常

  6. 识别数据中的异常值或不符合预期的模式,帮助解决数...

Read more

数据摄取-


Ingest(数据摄取)是指将数据从一个来源系统(如传感器、应用程序、文件、数据库等)提取并导入到另一个存储系统或数据处理平台(如数据库、数据仓库、数据湖等)中的过程。数据摄取是数据处理管道中的一个关键步骤,通常是分析、存储或进一步处理数据的前提。

在现代数据工程和大数据处理中,数据摄取通常包括以下几个关键过程:

1. 数据来源

  • 数据摄取通常涉及从多个数据源(结构化、半结构化或非结构化)获取数据。
  • 结构化数据:如关系型数据库(MySQL、PostgreSQL)、CSV 文件等。
  • 半结构化数据:如 JSON、XML 格式的数据,通常存储在日志文件、NoSQL 数据库(如 MongoDB...

Read more

数据验证


Data Validation (数据验证) 是一种确保数据准确性、完整性和一致性的重要过程。它的主要目的是确保数据在输入、存储和处理过程中符合预定的规则和标准,从而避免错误数据的出现,提高数据质量。

数据验证的关键要素:

  1. 准确性
  2. 数据验证确保数据符合预定的准确标准。例如,用户输入的日期应该符合有效日期格式,邮政编码应符合特定的格式等。

  3. 完整性

  4. 确保数据记录没有缺失关键字段。例如,填写表单时,必填字段应被完整填写,不允许出现空白或不完整的记录。

  5. 一致性

  6. 确保数据在不同系统或不同时间点之间的一致性。例如,某个用户的出生日期应该在所有记录中一致。

  7. 合理性

  8. ...

Read more

数据分析与数据挖掘的区别


Data AnalysisData Mining 是数据科学领域中常见的两个术语,虽然它们有一些重叠,但它们的目标、方法和应用有所不同。以下是两者的关键区别:

1. 定义和目标

  • Data Analysis (数据分析)
  • 定义:数据分析是对已收集的、已整理的数据进行统计处理、汇总、评估和解释,以便从中提取有意义的信息,并用于决策支持。
  • 目标:数据分析的主要目标是理解数据,识别数据中的模式、趋势、关系或潜在问题,帮助解决特定的业务问题。
  • 方法:使用统计学、数学和图形可视化工具分析数据,如描述性统计(均值、标准差等)、假设检验、回归分析等。

  • Data Mining (数据挖掘)...

Read more

数据分析师与数据科学家的区别


Data AnalystData Scientist 是两个在数据领域中常见的角色,它们虽然有重叠的地方,但在职责、技能和工作重点上有所不同。下面是 Data AnalystData Scientist 之间的主要区别:

1. 核心职责

Data Analyst (数据分析师)

  • 数据收集与清洗:数据分析师的主要任务是收集、清洗和准备数据,以确保数据准确性和一致性。
  • 数据分析与报告:数据分析师分析数据以回答特定的业务问题,并生成报告和可视化,以帮助业务部门做出决策。
  • 历史数据分析:数据分析师通常专注于分析历史数据,识别趋势、模式和异常,生成定期报告或仪表盘,帮助公司理解过去发...

Read more

NumPy优势


NumPy 是 Python 中最基础和最强大的科学计算库之一,其主要功能是提供高效的多维数组对象和操作工具。作为科学计算、数据分析和机器学习的基础,NumPy 的优势体现在多个方面。以下是 NumPy 的一些主要优势

1. 高效的数组操作

NumPy 提供的核心数据结构是 ndarray,它是一种高效的多维数组对象,能够执行大量的数组操作。相比于 Python 的原生列表,NumPy 数组具有以下优势: - 内存连续性:NumPy 数组在内存中是连续存储的,这使得它在执行数组操作时比 Python 列表更加高效。 - 向量化运算:NumPy 使用矢量化(Vectorization)运...

Read more

NumPy-FAQ


要精通 NumPy,可以从以下几个方面提出问题,以深入理解其功能和使用:

1. 基本概念和数据结构

  • NumPy 中的 ndarray 是什么?它如何与 Python 的原生列表不同?
  • ndarrayshapesize 分别表示什么?
  • NumPy 数组的 dtype(数据类型)是什么?如何查看和转换数组的数据类型?
  • NumPy 数组的内存布局如何影响计算性能?
  • 如何通过索引和切片访问 ndarray 中的元素?

2. 创建和操作数组

  • 如何创建不同类型的 NumPy 数组(如从列表、范围、零、单位矩阵等)?
  • arangelinspace 的区别是什么?分别在什么情况下...

Read more

NumPy-数据类型


NumPy 是一个用于科学计算的核心库,提供了高效的多维数组对象和操作工具。Num值是 NumPy 中用于表示数值数据的基础数据结构,称为 ndarray。在使用 NumPy 时,理解数据类型(dtype)是非常重要的,因为它决定了数据存储的方式以及可以执行的操作。

1. NumPy 数据类型(dtype)

dtype(数据类型)是 NumPy 中用于指定数组元素类型的对象。NumPy 支持丰富的数据类型,包括整数、浮点数、布尔值等,具体类型可以根据需求指定。

2. 常见的 NumPy 数据类型

(1) 整数类型 (int)

NumPy 支持多种整数类型,它们根据存储的字节数来分类。常见...

Read more

探索性数据分析-EDA优势


Exploratory Data Analysis (EDA)(探索性数据分析)是数据科学和统计学中用于分析数据集的初步步骤。EDA 通过可视化和统计技术,帮助分析人员理解数据的结构、模式、分布和潜在关系,为进一步的建模、假设检验和数据清洗提供基础。

EDA 的主要目标是让分析师对数据有一个全面的理解,识别数据中的异常、趋势、分布和潜在关系。以下是 EDA 的一些主要优点

1. 发现数据的结构和特征

EDA 使分析人员能够从数据中提取出潜在的结构信息,如: - 数据的分布特征(例如正态分布或偏态分布) - 各变量之间的关系(如线性关系、非线性关系、相关性等) - 变量...

Read more

数据分析师需要哪些技能?


数据分析师(Data Analyst)是负责收集、处理、分析和解释数据的专业人员,他们的工作是帮助企业或组织从数据中提取有价值的洞察,支持决策过程。为了胜任这项工作,数据分析师需要具备一系列技术和非技术技能,涵盖数据处理、统计分析、编程、可视化等方面。

1. 技术技能

(1) 数据处理和清洗

  • 数据清洗(Data Cleaning):处理缺失值、重复数据、异常值等,确保数据的质量。
  • 数据预处理(Data Preprocessing):数据格式转换、标准化、归一化、特征工程等,为建模和分析做好准备。
  • SQL:熟练使用 SQL(结构化查询语言)从数据库中提取、更新和管理数据,掌握数据库管理系...

Read more