分类目录归档:产品研发

【置顶】ALL-需求列表


我将使用Markdown的语法为你生成四列10行的表格,表头为你指定的内容。

类别 需求名称 需求描述 备注
登录需求 人脸识别 web 登录界面通过人脸识别自动登录
量化交易策略 交易策略 选股策略 重要-2025-01-10
类别2 需求3 对需求3的具体描述 需尽快处理
类别2 需求4 对需求4的具体描述 需测试
类别3 需求5 对需求5的具体描述 等待反馈
类别3 需求6 对需求6的具体描述 已沟通
类别4 需求7 对需求7的具体描述 需调整
类别4 需求8 对需求8的具体描述 可优化
类别5 需求9 对需求9的具体描述 关注进度...

Read more

数据预处理


数据预处理是数据分析和机器学习中的关键步骤,旨在将原始数据转换为适合模型训练的格式。以下是数据预处理的主要步骤和常见方法:


1. 数据收集

  • 从数据库、API、文件(如CSV、Excel)或网络爬虫等来源获取数据。
  • 确保数据的完整性和多样性。

2. 数据清洗

  • 处理缺失值:删除、填充或插值。
  • 处理重复数据:删除重复记录。
  • 处理异常值:检测并处理异常值。
  • 格式标准化:统一日期、时间、文本等格式。
  • 处理噪声数据:平滑或分箱处理。

3. 数据集成

  • 将多个数据源的数据合并,处理字段不一致和冗余问题。
  • 解决数据冲突(如不同数据源的同一字段命名不同)。

4. 数据变换

  • 归一化/标准...

Read more

数据清洗-数据预处理


数据清洗是数据预处理的关键步骤,旨在提高数据质量,确保后续分析的准确性。以下是数据清洗的主要步骤和常见方法:

1. 处理缺失值

  • 删除:若缺失值过多或对分析影响较小,可直接删除相关行或列。
  • 填充:用均值、中位数、众数或基于其他特征的预测值填补缺失值。
  • 插值:使用线性插值、多项式插值等方法估算缺失值。

2. 处理重复数据

  • 删除重复行:识别并删除完全重复的记录。
  • 合并重复数据:若部分重复但有差异,可根据业务需求合并或保留最新记录。

3. 处理异常值

  • 识别异常值:通过箱线图、Z-score、IQR等方法检测异常值。
  • 处理异常值:根据情况删除、替换或保留异常值。

4. 数据格式标准化

...

Read more

实时数据工程管道-概述


以下是关于实时数据工程管道的详细介绍:

基本概念

实时数据工程管道是一种能够实时捕获、处理和传输数据的系统架构,旨在确保数据从产生到被分析和利用的过程中,尽可能地减少延迟,以满足对实时性要求较高的业务场景需求。

主要组成部分

  • 数据采集:从各种数据源实时获取数据,如数据库、文件系统、消息队列、物联网设备、Web服务等。常用的采集工具和技术包括Kafka Connect、Flume、Logstash、Sqoop等,以及各种针对特定数据源的API和驱动程序。
  • 数据传输:负责将采集到的数据可靠地传输到处理和存储环节,通常会使用消息队列系统,如Apache Kafka、RabbitMQ等,以确保...

Read more

数据质量保障体系


数据质量保障体系(Data Quality Assurance System, DQAS)是一套系统化的方法和流程,旨在确保数据的准确性、完整性、一致性、及时性和可靠性。以下是数据质量保障体系的关键组成部分:

1. 数据质量管理框架

  • 政策与标准:制定数据质量管理政策,明确数据质量标准和要求。
  • 组织架构:设立专门的数据质量管理团队,明确职责和权限。
  • 流程与规范:建立数据质量管理流程,包括数据采集、存储、处理、分析和使用的规范。

2. 数据质量评估

  • 数据质量维度:评估数据的准确性、完整性、一致性、唯一性、及时性和有效性。
  • 数据质量指标:定义和量化数据质量指标,如错误率、缺失率、重复率等...

Read more

新闻搜索智能体设计文档


新闻搜索智能体设计文档

一、引言

  1. 背景:随着互联网信息的爆炸式增长,用户对于快速、准确获取特定类型新闻的需求日益增加。为满足这一需求,设计并开发一款具备高效新闻搜索功能的智能体具有重要意义。
  2. 目标:本智能体旨在根据用户的需求,精准搜索各类新闻,如时事新闻、娱乐新闻、科技新闻等,并按照用户对时效性、准确性、相关性等要求,为用户提供高质量的新闻搜索结果。

二、需求分析与规划

  1. 明确目标
    • 新闻类型:支持时事新闻、娱乐新闻、科技新闻、财经新闻、体育新闻等多种类型的搜索。
    • 用户要求
      • 时效性:优先展示最近一定时间内(可根据用户设置,默认为24小时)发布的新闻。
      • 准确性:确保新闻内容真实可靠,来...

Read more

搜索新闻功能的智能体设计框架流程-V1


以下是实现搜索新闻功能的智能体设计框架流程:

需求分析与规划 明确目标:确定智能体需要搜索的新闻类型,如时事新闻、娱乐新闻、科技新闻等,以及用户对搜索结果的要求,比如时效性、准确性、相关性等。 功能规划:规划智能体的基本功能,包括关键词搜索、多源数据整合、结果筛选与排序、内容摘要等。 框架搭建 选择框架:根据需求选择合适的智能体开发框架,如LangGraph、Workflows等。LangGraph图结构代码简洁易理解,适合复杂节点逻辑场景;Workflows强调异步执行能力,可简化可循环智能体构建过程。 搭建基础架构:在所选框架下,搭建智能体的基础架构,包括输入模块、处理模块和输出模块...

Read more

行业舆情分析-


行业舆情分析是指通过收集、整理和分析特定行业内的舆论信息,评估公众、媒体、消费者等对该行业的看法、态度和情绪。这种分析有助于企业、政府或相关机构了解行业动态、市场趋势、竞争态势以及潜在风险,从而制定更有效的策略。

行业舆情分析的主要内容

  1. 舆论来源分析
  2. 媒体:包括新闻网站、社交媒体、博客、论坛等。
  3. 公众:消费者、投资者、员工等的意见和反馈。
  4. 专家:行业专家、学者、分析师的观点。

  5. 舆论内容分析

  6. 正面舆论:对行业的赞扬、认可、支持等。
  7. 负面舆论:对行业的批评、质疑、投诉等。
  8. 中性舆论:客观报道、事实陈述等。

  9. 舆论趋势分析

  10. 时间维度:舆论在不同时间段的变化趋势。
  11. 事件维...

Read more

遗传算法-


遗传算法(Genetic Algorithm, GA)是一种基于自然选择和遗传机制的优化搜索算法,常用于解决复杂的优化问题。它模拟生物进化中的选择、交叉(重组)、变异等过程,逐步优化解的质量。

核心概念

  1. 个体(Individual):表示问题的一个潜在解,通常用染色体编码。
  2. 种群(Population):由多个个体组成的集合,代表当前解的集合。
  3. 适应度函数(Fitness Function):评估个体优劣的函数,适应度越高,解越好。
  4. 选择(Selection):根据适应度选择优秀个体进入下一代。
  5. 交叉(Crossover):通过组合两个父代个体的基因生成新个体。
  6. 变异(Mutation...

Read more

AutoML-自动化机器学习-Python库


在交易系统和体育博彩中使用AutoML(自动化机器学习)可以极大地简化模型选择、超参数调优和特征工程的过程。Python提供了多种AutoML库,适用于这些领域。以下是使用AutoML进行交易系统和体育博彩的概述,以及一些常用的Python库。


1. 交易系统中的AutoML

交易系统通常涉及时间序列数据,目标是预测价格走势、识别趋势或生成买卖信号。AutoML可以帮助自动化构建和优化这些任务的模型。

步骤:

  1. 数据收集:收集历史价格数据、技术指标和其他相关特征(如成交量、移动平均线、RSI等)。
  2. 特征工程:创建特征,如滞后价格、滚动平均值和波动率指标。
  3. 模型训练:使用AutoML自动...

Read more