作者文章归档:course

链式法则:微积分中看不见的纽带


链式法则:微积分中看不见的纽带

在微积分的宏伟殿堂中,链式法则宛如一条看不见的纽带,将复杂函数的求导过程分解为优雅而简洁的步骤。这条看似简单的法则,不仅是数学家的精巧创造,更是我们理解变化世界中多层关系的钥匙。当我们追踪空气中污染物的扩散、计算金融市场的复合增长率,甚至训练深度神经网络时,链式法则都在默默发挥着它的魔力。

链式法则解决的核心问题是复合函数的求导方法。所谓复合函数,就像俄罗斯套娃,一个函数嵌套在另一个函数之中。形式上,如果有两个函数y=f(u)和u=g(x),那么它们的复合函数就是y=f(g(x))。链式法则告诉我们,这个复合函数的导数可以表示为:dy/dx = (dy/d...

Read more

提示词-ONE


参考StockPredictionFiveMinuteSum.vue页面的实现 新页面 StockRanking.vue

实现的功能, 显示 日线模型 5分钟模型 百分比模型 三个模型都上涨的股票 这些是复选框功能

页面上展示的卡片是从predictPriceFiveMinuteTrend 这个集合取到的

具体的过滤逻辑 , 1. 从src_db.stockMinuteHist集合获取最后一条记录的日期 2. 根据这个日期从stock_database.trendAnomaly中查询匹配的所有记录 3. 使用这些股票代码去predictPriceV2集合中匹配change_perc...

Read more

TimeXer:融合外部变量的时间序列预测新范式


TimeXer:融合外部变量的时间序列预测新范式

TimeXer 是清华大学研究团队在2024年提出的一种创新型时间序列预测模型,它专门设计用于有效融合外生变量(外部因素) 来提升对目标序列(内生变量)的预测精度。该模型基于经典的Transformer架构,通过巧妙的嵌入策略和注意力机制调整,使其能够同时捕捉时间序列的内在模式和外部因素的影响。

核心设计与原理

TimeXer 的核心创新在于其差异化的嵌入策略双注意力机制,解决了传统方法在处理外生变量时面临的挑战。

  1. 差异化的嵌入策略

    • 内生变量嵌入:采用分块(Patching)策略(将时间序列分割为不重叠的片段,每个片段视为一个 t...

Read more

洞察市场的脉搏:动态条件相关模型(DCC)深度解析


洞察市场的脉搏:动态条件相关模型(DCC)深度解析

在金融市场的波澜诡谲中,资产之间的关系绝非一成不变。牛市时,股票齐涨,相关性增强;危机中,所有资产似乎都同步下跌,相关性骤然飙升;而在平静期,它们又可能各自为政。这种如同“情绪”般不断变化的关联性,是风险管理的核心,也是传统模型无法捕捉的盲区。而动态条件相关模型(Dynamic Conditional Correlation, DCC)正是为了洞察这一“市场脉搏”而诞生的强大工具。

一、 核心思想:从“静态”到“动态”的革命

在DCC模型出现之前,分析多种资产风险的主流方法是使用常相关假设,比如经典的资本资产定价模型(CAPM)或风险矩...

Read more

FastDTW-时间序列相似性检测


FastDTW(Fast Dynamic Time Warping)是一种用于计算两个时间序列之间相似性的高效算法。它是经典动态时间规整(DTW)算法的一种近似方法,旨在解决 DTW 计算复杂度高的问题。

为了更好地理解 FastDTW,我们首先需要了解它要解决的问题和它改进的原始算法。


1. 背景:什么是 DTW?

动态时间规整 (Dynamic Time Warping, DTW) 是一种用于衡量两个不同长度的时间序列之间相似度的经典算法。它的核心思想是找到两个序列之间的最佳对齐方式,即使它们在时间轴上有非线性(如速度不一)的偏移。

  • 解决的问题:例如,比较两个人说同一个单词的音频...

Read more

数据科学体系架构:从理论基础到工程实践-V03


数据科学体系架构:从理论基础到工程实践

一、数据基础架构与工程实践

现代数据科学建立在规模化数据工程基础之上。数据流水线采用Lambda架构实现批流一体化处理,使用Apache Spark进行分布式ETL处理,通过Apache Kafka构建实时数据流平台。数据质量保障采用系统化方法:使用Great Expectations框架定义数据质量规则,通过Anomaly Detection算法识别数据异常,基于数据血缘分析实现全链路追溯。

在特征工程层面,我们采用自动化特征工程(AutoFE)技术:使用TSFresh进行时序特征自动生成,通过FeatureTools实现深度特征合成。针对高维稀...

Read more

数据科学体系化构建:从底层处理到生产级部署-v02


数据科学体系化构建:从底层处理到生产级部署

数据科学作为一门融合统计学、计算机科学和领域知识的交叉学科,已形成完整的理论体系和技术栈。本文将从专业视角深入剖析数据科学的关键组成部分,着重探讨数据处理与分析、机器学习、图分析、向量搜索、优化算法以及MLOps等核心模块的技术实现与系统集成。

数据工程基础:构建可靠的数据流水线

数据处理是数据科学项目的基石。在实际工业场景中,数据工程师需要构建稳健的ETL(Extract-Transform-Load)流水线来处理多源异构数据。我们采用Apache Spark等分布式计算框架处理海量数据,运用数据质量框架如Great Expectations...

Read more

数据科学全景解析:从数据处理到智能部署-V01


数据科学全景解析:从数据处理到智能部署

在当今数据驱动的时代,数据科学已成为企业获取竞争优势的核心引擎。作为一名数据科学家,我深刻理解这个领域的复杂性和多维性。数据科学不仅是一门学科,更是一个完整的生态系统,涵盖了从数据收集到智能决策的全过程。本文将带您深入探索数据科学的关键组成部分,揭示如何将原始数据转化为可行动的智能。

数据基础:处理与分析的艺术

任何数据科学项目的起点都是数据。数据处理与分析构成了整个数据科学金字塔的基石。在实际工作中,数据往往以混乱、不完整的形式存在。数据清洗和预处理因此成为最关键且最耗时的环节。我们使用各种工具和技术来处理缺失值、异常值和重复数据,确保数据质量。...

Read more