1. 一段话总结
本文聚焦算法交易中的订单执行这一基础问题(核心目标是完成特定工具的清算或获取订单),指出近年该领域已从基于模型的市场假设分析视角转向无模型的强化学习视角,但由于策略可利用的市场信息存在噪声且不完美,构建样本高效的强化学习方法面临挑战;为此提出一种新颖的通用交易策略优化框架,其核心是借助先知教师(拥有完美信息)的策略蒸馏方法引导通用策略学习,以逼近最优交易策略,在AAAI 2021上被接收的该方法,经大量实验验证,相比多种强基线有显著改进,且交易行为合理。
2. 思维导图(mindmap)
## 核心背景
- 问题定位:算法交易中的订单执行(清算/获取特定工具订单)
-...