以下是 RLVR(Reinforcement Learning with Verifiable Rewards,可验证奖励强化学习)的技术概述,综合其核心机制、应用场景、争议及最新进展:
一、技术原理与核心机制
- 基本框架
RLVR 是一种针对大模型推理任务的强化学习方法,其核心思想是利用可自动验证的奖励信号(如数学答案的正确性、代码的测试通过率)替代人工标注,驱动模型优化。训练过程包含: - 策略模型:生成候选答案及推理过程。
-
奖励函数:基于验证结果(如答案匹配或测试通过)给出 0/1 奖励,并结合格式规范性(如是否包含
\boxed{}
)设计复合奖励。 -
关键算法
- GR...