分类目录归档:数据分析平台

数据摄取-


Ingest(数据摄取)是指将数据从一个来源系统(如传感器、应用程序、文件、数据库等)提取并导入到另一个存储系统或数据处理平台(如数据库、数据仓库、数据湖等)中的过程。数据摄取是数据处理管道中的一个关键步骤,通常是分析、存储或进一步处理数据的前提。

在现代数据工程和大数据处理中,数据摄取通常包括以下几个关键过程:

1. 数据来源

  • 数据摄取通常涉及从多个数据源(结构化、半结构化或非结构化)获取数据。
  • 结构化数据:如关系型数据库(MySQL、PostgreSQL)、CSV 文件等。
  • 半结构化数据:如 JSON、XML 格式的数据,通常存储在日志文件、NoSQL 数据库(如 MongoDB...

Read more

数据验证


Data Validation (数据验证) 是一种确保数据准确性、完整性和一致性的重要过程。它的主要目的是确保数据在输入、存储和处理过程中符合预定的规则和标准,从而避免错误数据的出现,提高数据质量。

数据验证的关键要素:

  1. 准确性
  2. 数据验证确保数据符合预定的准确标准。例如,用户输入的日期应该符合有效日期格式,邮政编码应符合特定的格式等。

  3. 完整性

  4. 确保数据记录没有缺失关键字段。例如,填写表单时,必填字段应被完整填写,不允许出现空白或不完整的记录。

  5. 一致性

  6. 确保数据在不同系统或不同时间点之间的一致性。例如,某个用户的出生日期应该在所有记录中一致。

  7. 合理性

  8. ...

Read more

数据分析与数据挖掘的区别


Data AnalysisData Mining 是数据科学领域中常见的两个术语,虽然它们有一些重叠,但它们的目标、方法和应用有所不同。以下是两者的关键区别:

1. 定义和目标

  • Data Analysis (数据分析)
  • 定义:数据分析是对已收集的、已整理的数据进行统计处理、汇总、评估和解释,以便从中提取有意义的信息,并用于决策支持。
  • 目标:数据分析的主要目标是理解数据,识别数据中的模式、趋势、关系或潜在问题,帮助解决特定的业务问题。
  • 方法:使用统计学、数学和图形可视化工具分析数据,如描述性统计(均值、标准差等)、假设检验、回归分析等。

  • Data Mining (数据挖掘)...

Read more

数据分析师与数据科学家的区别


Data AnalystData Scientist 是两个在数据领域中常见的角色,它们虽然有重叠的地方,但在职责、技能和工作重点上有所不同。下面是 Data AnalystData Scientist 之间的主要区别:

1. 核心职责

Data Analyst (数据分析师)

  • 数据收集与清洗:数据分析师的主要任务是收集、清洗和准备数据,以确保数据准确性和一致性。
  • 数据分析与报告:数据分析师分析数据以回答特定的业务问题,并生成报告和可视化,以帮助业务部门做出决策。
  • 历史数据分析:数据分析师通常专注于分析历史数据,识别趋势、模式和异常,生成定期报告或仪表盘,帮助公司理解过去发...

Read more

探索性数据分析-EDA优势


Exploratory Data Analysis (EDA)(探索性数据分析)是数据科学和统计学中用于分析数据集的初步步骤。EDA 通过可视化和统计技术,帮助分析人员理解数据的结构、模式、分布和潜在关系,为进一步的建模、假设检验和数据清洗提供基础。

EDA 的主要目标是让分析师对数据有一个全面的理解,识别数据中的异常、趋势、分布和潜在关系。以下是 EDA 的一些主要优点

1. 发现数据的结构和特征

EDA 使分析人员能够从数据中提取出潜在的结构信息,如: - 数据的分布特征(例如正态分布或偏态分布) - 各变量之间的关系(如线性关系、非线性关系、相关性等) - 变量...

Read more

数据分析师需要哪些技能?


数据分析师(Data Analyst)是负责收集、处理、分析和解释数据的专业人员,他们的工作是帮助企业或组织从数据中提取有价值的洞察,支持决策过程。为了胜任这项工作,数据分析师需要具备一系列技术和非技术技能,涵盖数据处理、统计分析、编程、可视化等方面。

1. 技术技能

(1) 数据处理和清洗

  • 数据清洗(Data Cleaning):处理缺失值、重复数据、异常值等,确保数据的质量。
  • 数据预处理(Data Preprocessing):数据格式转换、标准化、归一化、特征工程等,为建模和分析做好准备。
  • SQL:熟练使用 SQL(结构化查询语言)从数据库中提取、更新和管理数据,掌握数据库管理系...

Read more

残差诊断-


Residual Diagnostics (残差诊断) 是在统计建模和回归分析中用来评估模型拟合效果的一个过程。通过分析残差,研究人员可以判断模型是否适合数据,并识别潜在的问题或偏差。残差是指模型预测值与实际观察值之间的差异。

残差诊断的关键点:

  1. 残差:模型预测值与真实值之间的差异。通常表示为: [ \text{残差} = \text{真实值} - \text{预测值} ] 残差反映了模型在拟合数据时的误差或偏差。

  2. 残差诊断的目的

  3. 评估模型假设的合理性:通过分析残差的模式,检查是否满足模型的基本假设(如线性关系、正态性、同方差性等)。
  4. 识别模型不足:...

Read more

数据分析生命周期:从业务理解到数据预测


数据分析生命周期:从业务理解到数据预测

数据分析生命周期是指从开始分析业务问题,到最后使用数据做出预测和决策的一系列过程。这个过程涉及多个阶段,每个阶段的目标都是为了最终提供有价值的洞察和支持决策。典型的数据分析生命周期通常包括以下几个重要阶段:业务理解、数据理解、数据准备、数据建模、数据评估、数据预测和结果呈现。本文将重点探讨前三个阶段:业务理解数据理解数据预测

1. 业务理解:明确目标,定位问题

业务理解是数据分析生命周期中的第一步,也是最为关键的一步。在这一阶段,数据分析师需要与业务团队密切合作,深入了解企业的核心目标、面临的挑战以及所期望的结果。没有清晰的业务理解,数据分析...

Read more

数据科学


数据科学是一门融合了数学、统计学、计算机科学等多学科知识,旨在从海量数据中提取有价值信息和知识的交叉学科领域。以下是对其详细介绍:

工作流程

  • 问题定义:明确业务需求和数据分析目标,将实际问题转化为可通过数据解决的问题。
  • 数据获取与准备:收集来自不同数据源的数据,如数据库、文件系统、网络爬虫等,并进行清洗、转换、集成等预处理操作,确保数据的质量和可用性。
  • 数据分析与探索:运用统计分析、数据可视化等方法,对数据进行探索性分析,了解数据的分布、特征、相关性等,发现数据中的模式和规律。
  • 模型构建与训练:根据分析目标和数据特点,选择合适的机器学习、深度学习等算法,构建数据模型,并使用训练数据对模...

Read more

数据工程


数据工程是一个跨学科领域,旨在设计、构建和维护数据处理系统,以确保数据在组织内的有效流动、存储和利用。以下是对其详细介绍:

工作内容

  • 数据架构设计:规划数据系统的整体架构,包括数据存储、处理和传输的方式。设计数据库架构,确定数据模型和表结构,考虑数据的一致性、完整性和可扩展性。
  • 数据管道构建:创建数据管道,将来自不同数据源的数据进行抽取、转换和加载(ETL)到目标系统中。使用Apache Kafka、Apache NiFi等工具构建实时或批量数据处理管道,确保数据的及时和准确传输。
  • 数据仓库建设:建立数据仓库,对海量数据进行集中存储和管理。使用Hadoop、Spark等大数据技术对数据...

Read more