分类目录归档:深度学习

Faster RCNN-深度学习目标检测框架


Faster RCNN是一种深度学习目标检测框架,以下是对其详细介绍:

发展历程

Faster RCNN由微软研究院的Shaoqing Ren、Kaiming He、Ross Girshick和Jian Sun共同开发。它是在R-CNN和Fast R-CNN基础上发展而来,R-CNN首次将CNN应用于目标检测,但训练过程繁琐且无法实现端到端;Fast R-CNN虽有所改进,但仍使用selective search算法生成目标候选框。Faster RCNN则使用RPN生成候选区域,摒弃了selective search算法,完全使用CNN解决目标检测任务。

算法原理

  • 特征提取:使用预训练...

Read more

扩散模型


扩散模型是一类基于概率的生成模型,以下是关于它的详细介绍:

基本原理

  • 正向过程:也称为加噪过程,从真实数据开始,通过迭代地向数据中逐步添加高斯噪声,将数据的分布逐渐转化为一个更广泛的噪声分布,直到最后生成一个完全的随机噪声。这个过程通常是一个马尔科夫过程。
  • 逆向过程:是扩散模型的核心目标,旨在从完全的噪声中恢复出真实数据。在训练阶段,通过训练一个神经网络来模拟逆向过程,学习从噪声中逐步去噪的能力,以恢复到原始数据。

训练与优化

  • 损失函数:通常采用负对数似然函数作为损失函数,如去噪损失函数等,通过最小化该损失函数来优化模型,使得模型在逆向过程中能够生成逼真的样本。
  • 优化算法:使用随机...

Read more

转置卷积


转置卷积(Transpose Convolution),也叫反卷积(Deconvolution)或分数步长卷积(Fractionally-strided Convolution),是一种在卷积神经网络中常用的上采样操作,以下是关于它的详细介绍:

基本原理

  • 概念理解:普通卷积是对输入图像进行下采样,通过卷积核在输入图像上滑动,计算卷积结果得到输出特征图,输出特征图的尺寸通常小于输入图像。而转置卷积则是相反的过程,它对输入特征图进行上采样,将其尺寸放大得到一个更大的输出特征图。
  • 计算方式:在转置卷积中,卷积核在输入特征图上的滑动方式与普通卷积类似,但在计算输出时,会在输入特征图的元素之间插...

Read more