在深度学习中,Dense Layer(全连接层)是一种非常常见且重要的神经网络层,以下是对其的详细介绍:
定义与基本原理
- 定义:Dense Layer也叫全连接层,是一种在神经网络中,当前层的每个神经元与前一层的所有神经元都相互连接的层,其神经元之间的连接是全连接的方式,即每个输入神经元都与每个输出神经元相连。
- 基本原理:在全连接层中,输入数据被看作是一个一维向量,每个神经元对输入数据进行加权求和,并加上一个偏置项,然后通过一个激活函数得到输出。
数学表达式
- 假设全连接层的输入为$x$,是一个维度为$n$的向量,权重矩阵为$W$,其形状为$(m, n)$,其中$m$是该层神经元的数...