分类目录归档:人工智能

交并比-DL


交并比(Intersection over Union,IoU)是目标检测和图像分割领域中用于衡量两个区域重叠程度的重要指标,以下是关于它的详细介绍:

定义

IoU是指两个区域(通常是预测的目标框与真实的目标框)的交集面积与并集面积的比值。其计算公式为:$IoU=\frac{A\cap B}{A\cup B}$,其中$A$和$B$分别表示两个区域,$A\cap B$表示它们的交集,$A\cup B$表示它们的并集。

取值范围及意义

  • 取值范围:IoU的取值范围在0到1之间。
  • 具体意义:当IoU为0时,表示两个区域没有任何重叠;当IoU为1时,表示两个区域完全重合;IoU的值越接近1,说明...

Read more

锚框-DL


锚框(Anchor Box)是目标检测算法中一个非常重要的概念,以下是关于它的详细介绍:

定义

锚框是在目标检测任务中,预先在图像上定义的一系列具有不同大小和宽高比的矩形框。这些矩形框以一定的规则在图像上均匀分布或按照特定的策略生成,作为目标可能存在的候选区域。

作用

  • 确定目标位置:由于目标在图像中的位置和大小是未知的,锚框提供了一种先验知识,通过与真实目标的匹配,可以大致确定目标的位置和范围,为后续的精确检测和定位提供基础。
  • 多尺度检测:不同大小和宽高比的锚框可以适应不同大小和形状的目标,能够在同一图像中检测到各种尺度的目标,提高了目标检测的鲁棒性和准确性。

生成方式

  • 基于滑动窗...

Read more

提升模型精度-DL


在深度学习中,提升模型精度是一个不断探索和优化的过程,以下是一些有效的思路:

数据层面

  • 数据增强:通过对原始数据进行随机变换,如旋转、翻转、缩放、裁剪、添加噪声等,增加数据的多样性,扩充训练数据集,使模型学习到更具鲁棒性的特征,从而提高在不同情况下的预测精度。
  • 数据清洗:去除数据集中的错误数据、重复数据和异常数据,确保数据的质量和一致性,减少噪声对模型训练的干扰,有助于提升模型精度。
  • 数据标注优化:对于监督学习任务,提高数据标注的准确性和一致性,确保标注信息与实际情况相符,同时可以采用多人标注、交叉验证等方式提高标注质量。

模型层面

  • 选择合适的模型架构:根据具体任务和数据特点,选择...

Read more

残差网络


ResNet即残差网络(Residual Network),是一种深度卷积神经网络架构,由何凯明等人在2015年提出,以下是对其的详细介绍:

提出背景

随着神经网络层数的增加,出现了梯度消失或梯度爆炸问题,导致网络难以训练。同时,网络越深,模型的准确率可能会达到饱和甚至下降,出现退化问题。ResNet旨在解决这些问题,使训练极深的网络成为可能。

核心思想

  • 残差学习:引入了残差块(Residual Block)的概念,其核心是通过捷径连接(Shortcut Connection)将输入直接加到输出上,使得网络可以学习到输入与输出之间的残差。即不是直接学习目标函数 (H(x)),而是学习残...

Read more

统计学习


统计学习是一门涉及统计学、计算机科学、数学等多领域的交叉学科,以下是其详细介绍:

基本概念

  • 定义:统计学习是基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,也称为统计机器学习。主要研究如何利用计算机从大量数据中学习有用的知识和规律,以实现对未知数据的预测、分类、聚类等任务。
  • 三要素
    • 模型:是对数据的一种抽象表示,例如线性回归模型、决策树模型、神经网络模型等。
    • 策略:用于衡量模型的好坏,通常基于损失函数来评估模型预测结果与真实结果之间的差异,如均方误差、交叉熵损失等。
    • 算法:指的是求解模型参数的具体方法,如梯度下降算法、牛顿法等,通过不断优化模型参数,使得损失函数达到最...

Read more

SSD模型


SSD(Single Shot MultiBox Detector)模型是一种先进的单阶段目标检测模型,以下是对其更详细的介绍:

网络结构

  • 特征提取网络:通常采用如VGG16、ResNet等预训练的卷积神经网络作为基础网络,对输入图像进行卷积运算以提取高层次的特征信息。
  • 多尺度检测网络:在基础网络的不同层上添加多个卷积层,用于生成不同尺度的特征图,实现多尺度检测。较浅的层生成的特征图可检测较大的物体,较深的层生成的特征图可检测较小的物体。

关键技术

  • 先验框(Default Boxes):在每个特征图上定义一系列不同形状和大小的先验框,其中心点在特征图上均匀分布,每个中心点对应多个先...

Read more

SSD-目标检测算法


SSD(Single Shot MultiBox Detector)是一种先进的目标检测算法,以下是对其的详细介绍:

发展历程

SSD由Wei Liu等人在2016年的ECCV会议上提出。它借鉴了YOLO的单阶段检测思想,并结合多尺度特征检测的优势,在实时性和准确性之间找到了良好平衡点。

算法原理

  1. 特征提取:使用预训练的卷积神经网络如VGG16或ResNet作为基础网络,提取图像特征。
  2. 多尺度特征图:在基础网络的不同层生成多尺度特征图,浅层特征图用于检测小目标,深层特征图用于检测大目标。
  3. 先验框(Default Boxes):在每个特征图上定义一系列不同形状和大小的先验框,其中心点在特...

Read more

R-CNN深度学习目标检测算法


R-CNN(Region-based Convolutional Neural Network)是一种具有开创性的深度学习目标检测算法,以下是对其详细介绍:

发展背景

在R-CNN出现之前,传统的目标检测方法主要基于手工特征和机器学习算法,如Haar特征和Adaboost分类器等,在面对复杂场景和多样化目标时,检测精度和效率都存在较大局限性。2014年,Ross Girshick等人提出了R-CNN,将卷积神经网络(CNN)引入目标检测领域,开启了基于深度学习的目标检测新时代。

算法原理

  • 图像输入与区域提取:首先将输入图像调整为固定大小,然后使用一种称为选择性搜索(Selective ...

Read more

Faster RCNN-深度学习目标检测框架


Faster RCNN是一种深度学习目标检测框架,以下是对其详细介绍:

发展历程

Faster RCNN由微软研究院的Shaoqing Ren、Kaiming He、Ross Girshick和Jian Sun共同开发。它是在R-CNN和Fast R-CNN基础上发展而来,R-CNN首次将CNN应用于目标检测,但训练过程繁琐且无法实现端到端;Fast R-CNN虽有所改进,但仍使用selective search算法生成目标候选框。Faster RCNN则使用RPN生成候选区域,摒弃了selective search算法,完全使用CNN解决目标检测任务。

算法原理

  • 特征提取:使用预训练...

Read more

扩散模型


扩散模型是一类基于概率的生成模型,以下是关于它的详细介绍:

基本原理

  • 正向过程:也称为加噪过程,从真实数据开始,通过迭代地向数据中逐步添加高斯噪声,将数据的分布逐渐转化为一个更广泛的噪声分布,直到最后生成一个完全的随机噪声。这个过程通常是一个马尔科夫过程。
  • 逆向过程:是扩散模型的核心目标,旨在从完全的噪声中恢复出真实数据。在训练阶段,通过训练一个神经网络来模拟逆向过程,学习从噪声中逐步去噪的能力,以恢复到原始数据。

训练与优化

  • 损失函数:通常采用负对数似然函数作为损失函数,如去噪损失函数等,通过最小化该损失函数来优化模型,使得模型在逆向过程中能够生成逼真的样本。
  • 优化算法:使用随机...

Read more