分类目录归档:解决方案

股票价格-前复权、不复权、后复权


要理解股票价格的前复权、不复权、后复权,首先需要明确核心前提——除权除息:股票会因分红(现金分红)、送股/转增股等行为导致股价“跳空下跌”(如10送10后股价腰斩),这种跳空会割裂K线走势的连贯性。复权的本质就是消除除权除息的影响,让股价走势回归“真实趋势”;而不复权则保留了实际交易价格的原貌。

一、核心定义:三者的本质区别

三者的核心差异在于复权基准点不同(以哪个时间点的价格为“真实价格”,调整其他时间点的价格),进而导致股价数值、K线形态和应用场景完全不同。

1. 不复权(No Adjustment)

  • 定义:直接显示股票实际交易的价格,不处理任何除权除息行为。
  • 关键特征
  • K线图会...

Read more

青果-短效代理IP-企业代理IP云服务-动态代理


1. 一段话总结

青果自营的短效代理IP基于拨号VPS构建,部署全国200+城市与地区,日去重IP超200W+、日流水IP超400万,IP存活时长覆盖1-30分钟且多种可选;支持4种提取方式(弹性、按量、均匀、通道)与2种授权方式(帐密、白名单,白名单免费鉴权达256个),除按量提取外提供6小时免费试用,全协议支持(HTTP/HTTPS/SOCKS5)且毫秒级切换IP;热销套餐涵盖月付、季付、年付及按量套餐,价格0-3000元不等,多数套餐带宽峰值限制2Mbps、不限制终端数,平均成功率99.9%,适用于APP大数据分析、跨境选品、舆情监测、原创版权保护等场景,还配套产品说明、提取工具等...

Read more

提示词-ONE


分析平台

写一个预测分析页面,实现的功能为 选择开始时间 结束时间,分别展示某只股票, 这段时间内 预测价格 与 真实价格的 绘制出折线图,完成前后端的所有代码功能,并把这个页面放在分析平台的导航栏中

日线模型 预测数据的的集合为 predictPriceV2 真实数据的集合为bsStockDailyHist

stock_database是存放预测数据的数据库 src_db是存放真实数据的数据库

bsStockDailyHist 集合字段 为{ _id: ObjectId('68ca7e54385eccc7dd4bab09'), code: 'sh.600000',...

Read more

TimeXer:融合外部变量的时间序列预测新范式


TimeXer:融合外部变量的时间序列预测新范式

TimeXer 是清华大学研究团队在2024年提出的一种创新型时间序列预测模型,它专门设计用于有效融合外生变量(外部因素) 来提升对目标序列(内生变量)的预测精度。该模型基于经典的Transformer架构,通过巧妙的嵌入策略和注意力机制调整,使其能够同时捕捉时间序列的内在模式和外部因素的影响。

核心设计与原理

TimeXer 的核心创新在于其差异化的嵌入策略双注意力机制,解决了传统方法在处理外生变量时面临的挑战。

  1. 差异化的嵌入策略

    • 内生变量嵌入:采用分块(Patching)策略(将时间序列分割为不重叠的片段,每个片段视为一个 t...

Read more

洞察市场的脉搏:动态条件相关模型(DCC)深度解析


洞察市场的脉搏:动态条件相关模型(DCC)深度解析

在金融市场的波澜诡谲中,资产之间的关系绝非一成不变。牛市时,股票齐涨,相关性增强;危机中,所有资产似乎都同步下跌,相关性骤然飙升;而在平静期,它们又可能各自为政。这种如同“情绪”般不断变化的关联性,是风险管理的核心,也是传统模型无法捕捉的盲区。而动态条件相关模型(Dynamic Conditional Correlation, DCC)正是为了洞察这一“市场脉搏”而诞生的强大工具。

一、 核心思想:从“静态”到“动态”的革命

在DCC模型出现之前,分析多种资产风险的主流方法是使用常相关假设,比如经典的资本资产定价模型(CAPM)或风险矩...

Read more

FastDTW-时间序列相似性检测


FastDTW(Fast Dynamic Time Warping)是一种用于计算两个时间序列之间相似性的高效算法。它是经典动态时间规整(DTW)算法的一种近似方法,旨在解决 DTW 计算复杂度高的问题。

为了更好地理解 FastDTW,我们首先需要了解它要解决的问题和它改进的原始算法。


1. 背景:什么是 DTW?

动态时间规整 (Dynamic Time Warping, DTW) 是一种用于衡量两个不同长度的时间序列之间相似度的经典算法。它的核心思想是找到两个序列之间的最佳对齐方式,即使它们在时间轴上有非线性(如速度不一)的偏移。

  • 解决的问题:例如,比较两个人说同一个单词的音频...

Read more

动态条件相关系数(DCC)模型:理论与应用解析


动态条件相关系数(DCC)模型:理论与应用解析

一、引言:动态相关性的金融现实与模型需求

在金融市场中,资产间的相关性并非恒定不变。例如,股市暴跌时,不同股票的相关性往往显著上升,这种“同涨同跌”的动态依赖关系,对投资组合优化、风险度量至关重要。传统静态相关系数(如Pearson相关)无法捕捉这种时变特征,因此,Engle(2002)提出动态条件相关系数模型(Dynamic Conditional Correlation, DCC),为多变量时间序列的动态相关结构建模提供了有效工具。

二、DCC模型的核心架构:从波动率到相关性

DCC模型的设计分为两步:先建模单个资产的边际波动率(使用G...

Read more