分类目录归档:基础设施

MLOPS原理-视频文字


MLOps 原理与知识体系介绍

MLOps(Machine Learning Operations)是一种将机器学习模型从开发到部署、监控和维护的端到端流程进行标准化和自动化的实践。它借鉴了 DevOps 的理念,旨在提高机器学习项目的效率、可靠性和可重复性。

MLOps 的核心原理包括:

  • 自动化: 自动化机器学习工作流的各个环节,包括数据准备、模型训练、评估、部署和监控,以减少人为错误,提高效率。
  • 协作: 促进数据科学家、工程师和运维人员之间的协作,打破部门壁垒,实现知识共享和高效沟通。
  • 可重复性: 确保机器学习模型的训练和部署过程可重复,以便于调试、优化和版本控制。
  • 监控: ...

Read more

深度强化学习-交易领域


深度强化学习(Deep Reinforcement Learning, DRL)在算法交易领域受到了广泛关注,因为它能够在复杂和动态的环境中学习最优策略。以下是DRL在交易中的应用概述,包括关键概念、挑战以及实现DRL交易系统的步骤。


DRL在交易中的关键概念

  1. 强化学习(RL)基础
  2. RL涉及一个智能体与环境交互,以最大化累积奖励。
  3. 在交易中,智能体根据市场数据学习做出买入、卖出或持有的决策。

  4. 马尔可夫决策过程(MDP)

  5. 交易环境被建模为MDP,包括:

    • 状态(S):市场数据(如价格、成交量、技术指标)。
    • 动作(A):交易决策(如买入、卖出、持有或仓位管理)。
    • 奖励(R)...

Read more

支持向量机-SVM-视频文字


支持向量机(Support Vector Machine, SVM)是一种经典的监督学习算法,主要用于分类和回归任务,尤其在高维数据中表现优异。它的核心思想是通过寻找一个最优的超平面来分隔不同类别的数据,从而实现分类。以下是对SVM的详细介绍。


核心概念

  1. 超平面
  2. 在n维空间中,超平面是一个n-1维的子空间。对于二维数据,超平面是一条直线;对于三维数据,它是一个平面。SVM的目标是找到一个超平面,能够将不同类别的数据点分开。

  3. 支持向量

  4. 支持向量是离超平面最近的样本点,它们是决定超平面位置的关键。这些点“支持”了超平面的位置,因此得名。

  5. 间隔

  6. 间隔是超平面到最近支持...

Read more

矩阵变换-线性代数-数学


矩阵变换是线性代数中的一个重要概念,指的是通过矩阵对向量或空间进行线性变换。矩阵变换广泛应用于计算机图形学、物理学、工程学、机器学习等领域。以下是常见的矩阵变换类型及其应用:

1. 线性变换

  • 矩阵变换的核心是线性变换,满足以下性质:
    • 加法性:( T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) )
    • 齐次性:( T(c\mathbf{u}) = cT(\mathbf{u}) )
  • 任何线性变换都可以表示为矩阵乘法 ( T(\mathbf{v}) = A\mathbf{v} ),其中 ( A ) 是变换矩阵。

2. 常...

Read more

一文读懂FinGPT:金融科技的新引擎-V0


一、引言

在当今数字化浪潮席卷全球的时代,人工智能技术正以前所未有的速度渗透到各个领域,金融行业也不例外。随着大数据、机器学习和深度学习等技术的不断发展,金融领域的智能化变革正在悄然发生。在这一背景下,FinGPT 应运而生,它作为一款专为金融领域打造的开源大语言模型,正逐渐成为金融行业创新与发展的重要驱动力。 FinGPT 由 AI4Finance Foundation 开发,致力于为金融行业提供高效、精准且智能的解决方案。它的出现,犹如一颗璀璨的新星,照亮了金融领域智能化发展的道路。在金融市场瞬息万变的今天,投资者和金融从业者面临着海量的数据和复杂的信息,如何快速、准确地分析这些数据...

Read more

FinGPT 技术分析-视频文字


FinGPT 技术分析:深入理解

1. 引言

FinGPT 是由 AI4Finance Foundation 开发的开源金融大语言模型(LLM),旨在为金融领域提供高效、低成本的数据处理和分析解决方案。其核心目标是通过民主化的金融数据和灵活的微调机制,推动金融科技的创新与应用。

2. FinGPT 的核心技术

2.1 数据驱动与动态适应性
FinGPT 采用以数据为中心的方法,强调金融数据的获取、清理和预处理。通过自动化数据管理管道,FinGPT 能够及时更新数据(每月或每周),确保模型的准确性和相关性。与传统金融大模型(如 BloombergGPT)相比,FinGPT 的微调成本显...

Read more

探秘知识蒸馏:解锁AI模型优化的神奇密码- V1


一、走进知识蒸馏的奇妙世界

在深度学习的宏大版图中,模型的性能与资源消耗常常是一对难以平衡的矛盾。大型模型虽然能够展现出卓越的性能,但其庞大的参数量和复杂的计算需求,使得在资源受限的环境中部署困难重重。知识蒸馏,作为一种创新的技术手段,宛如一道曙光,为解决这一难题带来了新的希望。 简单来说,知识蒸馏是一种将大型、复杂模型(即教师模型)所蕴含的知识,巧妙地迁移至小型、简单模型(即学生模型)的技术。它打破了传统模型训练的局限,不仅仅依赖于训练数据中的硬标签,还充分挖掘了教师模型输出的软标签所携带的丰富信息 。通过这种独特的方式,学生模型能够在大幅减少计算资源需求的同时,尽可能地保留教师模型的...

Read more

知识蒸馏-视频文字


知识蒸馏(Knowledge Distiction)的深度解析

知识蒸馏是一种模型压缩与迁移学习技术,旨在将大型、复杂的模型(称为教师模型)的知识转移到小型、简单的模型(称为学生模型)中。其核心目标是通过模仿教师模型的行为,使学生模型在保持较高性能的同时,显著减少计算复杂度、存储需求和推理时间。这种方法在深度学习领域被广泛应用,尤其是在资源受限的场景中,如移动设备、嵌入式系统和实时应用。


核心思想与原理

知识蒸馏的核心思想是利用教师模型的“软输出”(soft outputs)作为额外的监督信号,而不仅仅依赖于训练数据中的“硬标签”(hard labels)。教师模型在训练数据上生成的输...

Read more

知识蒸馏-视频文字-V2


知识蒸馏(Knowledge Distiction)的深度解析

知识蒸馏是一种模型压缩与迁移学习技术,旨在将大型、复杂的模型(称为教师模型)的知识转移到小型、简单的模型(称为学生模型)中。其核心目标是通过模仿教师模型的行为,使学生模型在保持较高性能的同时,显著减少计算复杂度、存储需求和推理时间。这种方法在深度学习领域被广泛应用,尤其是在资源受限的场景中,如移动设备、嵌入式系统和实时应用。


核心思想与原理

知识蒸馏的核心思想是利用教师模型的“软输出”(soft outputs)作为额外的监督信号,而不仅仅依赖于训练数据中的“硬标签”(hard labels)。教师模型在训练数据上生成的输...

Read more

特征归一化-特征缩放


特征归一化(Feature Normalization),也称为特征缩放(Feature Scaling),是机器学习和数据分析中的一种数据预处理步骤,目的是将数据集中的特征(输入变量)转换到一个统一的标准尺度。许多机器学习算法在输入特征尺度相近时表现更好或收敛更快,因此特征归一化尤为重要。当特征的量纲或范围差异较大时(例如,年龄以“岁”为单位,收入以“元”为单位),归一化就显得非常必要。


常用的特征归一化方法

  1. 最小-最大归一化(Min-Max Scaling)
  2. 将特征缩放到一个固定的范围,通常是 [0, 1]。
  3. 公式:
    [ X_{\text{归一化}} = \...

Read more