分类目录归档:观点

解锁PCA:高维数据降维的神奇密码


什么是 PCA

在如今这个数据爆炸的时代,我们所接触的数据维度越来越高。就拿图像数据来说,一张普通的彩色图片,若分辨率为 1920×1080,每个像素点由 RGB 三个颜色通道表示,那么这张图片的数据维度就高达 1920×1080×3,这是一个极其庞大的数字 。在生物信息学领域,基因表达数据中常常包含成千上万个基因的表达量,维度同样高得惊人。高维度数据虽然包含了丰富的信息,但也带来了诸多问题,比如计算量大幅增加,模型训练时间变长,还容易出现过拟合现象,就像一辆装满了过多货物的卡车,行驶起来既缓慢又不稳定。

主成分分析(Principal Component Analysis,简称 PCA...

Read more

智能投顾平台——财富管理的创新引擎,开启新时代


智能投顾平台是什么?

在金融科技飞速发展的时代,智能投顾平台应运而生,为投资者带来了全新的投资体验。简单来说,智能投顾平台(Robo-Advisor)是一种基于人工智能、大数据和算法技术的数字化财富管理解决方案 ,它能替代传统的人工投资顾问,通过算法和模型为投资者提供自动化、个性化的投资建议和资产配置方案

智能投顾平台的核心原理融合了多个关键环节,每个环节都紧密相连,共同为投资者打造出科学、合理的投资规划。

首先是用户画像与风险偏好分析。智能投顾平台会通过一系列精心设计的问卷,广泛收集投资者的年龄、收入、投资目标、风险承受能力等多维度信息。以一位 35 岁的上班族为例,他希望在未来 1...

Read more

一文解锁强化学习:从原理到应用的奇妙之旅


从生活场景理解强化学习

想象你在玩一款策略游戏,每一步决策都会影响最终的胜负。你需要不断尝试不同的策略,观察游戏局势的变化,根据最终的胜负结果来调整自己的策略。如果某一步决策让你离胜利更近,你会倾向于在类似的情况下重复这个决策;反之,如果导致失败,你就会避免再次这样做。这,就是强化学习的基本思想。

在强化学习的术语中,玩游戏的你就是 “智能体(Agent)”,游戏环境就是 “环境(Environment)”,你做出的每一步决策就是 “动作(Action)”,游戏的胜负结果就是 “奖励(Reward)”。智能体通过与环境不断交互,根据获得的奖励来学习最优的行为策略,以最大化长期累积奖励 。...

Read more

一文解锁强化学习:从原理到应用的奇妙之旅-V2


从生活场景理解强化学习

想象你在玩一款策略游戏,每一步决策都会影响最终的胜负。你需要不断尝试不同的策略,观察游戏局势的变化,根据最终的胜负结果来调整自己的策略。如果某一步决策让你离胜利更近,你会倾向于在类似的情况下重复这个决策;反之,如果导致失败,你就会避免再次这样做。这,就是强化学习的基本思想。

在强化学习的术语中,玩游戏的你就是 “智能体(Agent)”,游戏环境就是 “环境(Environment)”,你做出的每一步决策就是 “动作(Action)”,游戏的胜负结果就是 “奖励(Reward)”。智能体通过与环境不断交互,根据获得的奖励来学习最优的行为策略,以最大化长期累积奖励 。...

Read more

解析Spearman核心原理,探索广泛的应用场景:从数据特征到结果解读


Spearman 核心原理与应用场景

一、研究背景

在大数据时代,数据量呈爆发式增长,数据分析成为众多领域决策的关键依据。从经济金融领域的市场趋势预测,到医学研究中的疾病关联性分析,再到环境科学里的生态变化监测,准确理解变量间的关系至关重要。传统的线性相关分析方法,如皮尔逊相关系数,在处理简单线性关系且数据满足正态分布时效果良好,但面对复杂多变的数据,其局限性逐渐凸显。Spearman 秩相关系数正是在这样的背景下,凭借其独特优势,成为数据分析不可或缺的工具。

二、Spearman 核心原理

(一)定义与基本概念

Spearman 秩相关系数是一种非参数统计指标,专注于衡量两个变量之间的...

Read more

卷积神经网络全面介绍


卷积神经网络全面介绍

定义与基本概念

卷积神经网络(Convolutional Neural Networks,简称 CNN),作为深度学习领域的核心算法之一,属于包含卷积计算且具有深度结构的前馈神经网络。其独特之处在于具备强大的表征学习能力,能够按照阶层结构对输入信息进行平移不变分类,因此也被称作 “平移不变人工神经网络(Shift-Invariant Artificial Neural Networks,SIANN)”。从本质上讲,CNN 模仿生物的视知觉机制构建,既可以进行监督学习,利用有标记的数据进行模型训练,让模型学习到数据中已知的特征和模式,从而对新数据进行准确分类和预测;也...

Read more

AI“眼”中识金:AlphaNet金融掘金之旅


金融新视野:AI 浪潮来袭

在当今全球经济一体化的大背景下,金融市场犹如一片波涛汹涌的海洋,时刻都在发生着复杂多变的波动。从华尔街的股票交易大厅,到亚洲各地的金融中心,无数投资者、分析师和金融机构都在密切关注着市场的一举一动。市场的复杂性体现在多个方面,其参与者的多样性令人瞩目,从经验丰富的大型投资机构,到初涉市场的个人投资者,他们怀揣着不同的目标、风险承受能力和投资策略,在市场中相互博弈 。与此同时,宏观经济因素,如经济增长的起伏、通货膨胀的变化、利率的升降以及汇率的波动,都对金融市场产生着深远的影响。就拿股票市场来说,一家公司的股票价格不仅取决于其自身的业绩表现、市场竞争力等内部因素...

Read more

解锁LangGraph:大模型时代的智能应用新框架


一、从困惑到好奇:LangGraph 初印象

在当今这个被大模型技术深度渗透的时代,我们在享受其带来的诸多便利时,也不得不面对一系列棘手的问题。就拿我日常工作中使用大模型来说,处理简单任务时,它确实表现出色,像快速生成文案、总结文档要点这类基础操作,往往能又快又好地完成。但一旦涉及到复杂流程,大模型就有些力不从心了。

比如说,之前我负责一个市场调研分析项目,需要从海量的行业报告、用户反馈数据以及市场动态资讯中,梳理出竞争对手的优劣势、市场份额变化趋势,还要预测未来市场走向并给出针对性的策略建议。这可不是一个简单的线性任务,它需要多轮的数据筛选、分析、交叉验证,以及根据不同阶段的结果进行...

Read more

从感知机到多层感知机:解锁神经网络的进阶密码


感知机:神经网络的起源

在人工智能的璀璨星空中,感知机(Perceptron)宛如一颗划破夜空的启明星,为后续神经网络的蓬勃发展照亮了前行的道路。1957 年,美国心理学家弗兰克・罗森布拉特(Frank Rosenblatt)怀揣着模拟人类神经元工作机制的梦想,提出了感知机这一开创性概念。

感知机的诞生深受人类大脑神经系统的启迪。神经元作为大脑的基本运作单元,能够接收来自其他神经元的输入信号,并依据这些信号进行计算进而输出结果。感知机试图模仿这种神经元的工作模式来攻克模式识别问题。它的基本结构包含输入层、加权和以及激活函数。输入层负责接收多个输入信号,这些信号可以是图像的像素值、数据的...

Read more

LLM:自然语言处理的变革者


LLM:自然语言处理的变革者

在当今数字化时代,大语言模型(LLM,Large Language Model)作为人工智能领域的关键技术,正以前所未有的态势深刻改变着自然语言处理的格局。LLM是基于深度学习的自然语言处理模型,能够理解和生成人类语言。其核心原理和架构主要基于Transformer模型。与传统语言模型相比,它在数据规模、训练方式、应用范围等维度展现出无可比拟的优势。

核心原理:让机器读懂语言

自监督学习:无师自通的奥秘

自监督学习堪称LLM的“无师自通秘籍”,打破了对大量人工标注数据的依赖。在自然语言处理领域,主要通过巧妙设计预测任务来实现,如掩码语言模型(Masked L...

Read more