分类目录归档:产品研发

AgentOps


AgentOps 是一种新兴的运维方法,主要针对 智能代理(Agent) 的部署、管理、监控和优化。智能代理通常是自动化的程序或系统,它们能够自主执行特定任务,如数据收集、决策制定、自动响应和交互。AgentOps 的目标是为这些智能代理提供一整套管理框架,以确保其在生产环境中的稳定性、效率和可扩展性。

1. 什么是 AgentOps?

AgentOps(Agent Operations)是指在生产环境中管理智能代理的生命周期,包括其配置、部署、监控、优化和更新。与传统的系统运维(Ops)类似,AgentOps 侧重于如何高效、安全地管理大量智能代理的工作负载,同时确保其能够持续执行任务...

Read more

LLMOPS


LLMOps(Large Language Model Operations)是指对大型语言模型(Large Language Models, LLMs)的运维、管理和优化的全过程。这一概念主要用于确保在生产环境中使用大规模语言模型时,能够高效、可靠、安全地进行部署、监控、优化以及更新。

随着大型语言模型(如 GPT-3、GPT-4、BERT 等)在各行各业中的广泛应用,LLMOps 成为支持这些技术在实际业务中的稳定性、可扩展性、可用性和合规性的重要手段。它借鉴了传统的 MLOps(机器学习运维)的理念,但侧重于特定的挑战,如模型规模、计算需求、推理速度、数据隐私以及伦理问题等。

1....

Read more

DORA-DevOps 研究与评估


DORA(DevOps Research and Assessment,DevOps 研究与评估)是一个聚焦于评估 DevOps 实践效果的研究项目。DORA 提供的数据驱动的指标帮助组织衡量软件交付和运维的绩效,以便优化 DevOps 转型的效果。DORA 的研究成果和指标广泛应用于业界,成为 DevOps 实践评估的重要参考标准。

1. 什么是 DORA?

DORA 起源于对 DevOps 最佳实践的研究,经过多年的积累,它形成了一套评估软件交付和运维绩效的标准指标。通过这些指标,组织能够定量地衡量其 DevOps 实践的效果,从而识别改进的机会,提升整体交付效率和质量。

2. DO...

Read more

数据湖屋


Data Lakehouse(数据湖屋)

数据湖屋(Data Lakehouse)是结合了数据湖(Data Lake)和数据仓库(Data Warehouse)特性的混合架构。它旨在通过整合数据湖的低成本、可扩展性和灵活性与数据仓库的结构化数据存储、事务支持和高效查询的优势,解决传统数据湖和数据仓库各自的局限性。数据湖屋为企业提供一个统一的平台,能够存储原始数据、处理数据并进行高效的数据分析,同时保留对结构化数据的支持。

1. 数据湖屋的主要特点

1.1 融合数据湖和数据仓库的优点

  • 低成本存储与灵活性:数据湖屋保留了数据湖的核心特点,可以存储结构化、半结构化和非结构化数据,且具有高度的...

Read more

数据湖


Data Lakes(数据湖)

数据湖(Data Lake)是一种数据存储架构,专门用于存放大量原始、未处理的数据,这些数据来自不同的来源,可以是结构化的(如数据库中的表格数据),半结构化的(如JSON、XML数据),或者是非结构化的(如文本文件、视频、音频等)。数据湖与传统的数据仓库不同,后者通常要求数据以特定结构进行清洗和转换,而数据湖允许在存储时保留原始数据,并且可以根据需要随时进行加工和处理。

数据湖架构的设计目标是为企业提供一个统一的、高容量的存储空间,用于存放所有类型的数据,并为数据科学家、分析师和开发人员提供一个灵活的环境来处理这些数据。


1. 数据湖的主要特点

1.1 ...

Read more

云端企业数据仓库


Cloud EDW (Cloud-based Enterprise Data Warehouse)

Cloud EDW(云端企业数据仓库) 是将传统的数据仓库架构迁移到云环境中,从而利用云计算的弹性、可扩展性和成本效益来管理和分析企业级数据。企业数据仓库(EDW, Enterprise Data Warehouse)是一个集中存储企业所有业务和运营数据的系统,用于支持分析和决策。云端企业数据仓库则是在云计算平台上搭建和运行这种数据仓库。

云端 EDW 提供了一个集成的数据存储、处理和分析平台,企业可以通过云平台的服务来实现数据集成、查询、报表生成和数据分析等操作。与传统的本地数据仓库相比...

Read more

数据网格


Data Mesh(数据网格)

Data Mesh(数据网格) 是一种新兴的分布式数据架构和理念,旨在解决传统数据架构(如数据湖、数据仓库)在大规模、复杂组织环境中的一些痛点,尤其是在数据管理、扩展性和跨部门协作等方面的挑战。它提倡将数据管理的责任分散到组织中的多个领域(如不同的业务部门、团队或产品线),而不是集中管理所有数据,像传统的数据湖或数据仓库那样通过单一的数据团队进行处理。

Data Mesh 强调的是领域驱动的分布式架构,使得每个业务领域(domain)都能独立管理和处理自己的数据,同时确保全局数据的共享和互操作性。这种架构更符合现代分布式架构和微服务的思想,能够有效地应对数...

Read more

Data Fabric-数据织网


Data Fabric (数据织网)

Data Fabric(数据织网) 是一种集成架构和技术解决方案,用于在组织内部或跨多个平台之间提供一致、可靠、无缝的数据访问、管理和治理。它将数据源、存储、处理和分析层进行整合,通过提供智能化的数据访问方式,帮助企业应对数据多样性、复杂性和分散性的挑战。

Data Fabric 旨在为数据驱动的业务提供一致的视图,能够跨越不同的数据库、应用程序、数据湖、数据仓库和云平台等数据存储位置,确保数据在不同环境和系统之间流动顺畅、灵活、快速并具有高可用性。


1. Data Fabric 的关键特点

1.1 统一的数据管理

Data Fabric 提供一个...

Read more

DevOps指标


DevOps指标(DevOps Metrics)是用于衡量和跟踪 DevOps 实践和流程效果的关键指标。这些指标帮助团队评估其开发、运维和部署的效率,识别瓶颈,并优化工作流以提高软件交付质量和速度。DevOps指标通常涉及以下几个关键领域:交付速度、质量、稳定性和响应性。下面列出了一些常见的 DevOps 指标及其作用:

1. 部署频率 (Deployment Frequency)

  • 定义:衡量软件部署的频率,通常表示每个单位时间(如每周、每月)发布多少次代码。
  • 意义:较高的部署频率表明团队能够快速交付新功能或修复。频繁部署有助于缩短反馈周期,并能更快地响应用户需求。
  • 目标:提高部署频...

Read more

Keepalive-


"Keepalive" 高可用性通常是指在分布式系统或网络架构中使用“keepalive”机制来确保服务的持续性和高可用性,特别是在长时间连接和网络会话中。这种机制可以防止连接超时,确保系统之间的连接持续有效,避免连接意外断开。以下是与“keepalive”相关的一些高可用性实践和概念:

1. TCP Keepalive

  • TCP Keepalive 是一种通过发送定期的“心跳”包来确认 TCP 连接仍然有效的机制。这对于长时间空闲的连接(例如,客户端与服务器之间的连接)尤其重要。
  • 在 TCP 协议层,keepalive 检查可以帮助检测连接的中断,并及时关闭无效连接。
  • 可以调整系统的 ...

Read more