在深度学习中,“步幅”(stride)是一个与卷积层和池化层相关的重要概念,它指的是在进行卷积或池化操作时,滤波器每次移动的步长。以下是关于步幅的详细介绍:
卷积层中的步幅
- 定义与作用:在卷积神经网络(CNN)的卷积层中,步幅决定了滤波器在输入数据上滑动的步长大小。例如,当步幅为1时,滤波器每次移动一个像素位置;当步幅为2时,滤波器每次移动两个像素位置。步幅的主要作用是控制输出特征图的尺寸大小,同时也会影响网络对输入数据的采样方式和特征提取效果。
- 对特征图尺寸的影响:设输入特征图的尺寸为(W\times H)(宽度(W)和高度(H)),滤波器的尺寸为(F\times F),填充(pad...