CycleGAN(Cycle-Consistent Generative Adversarial Network)是一种无监督学习的生成对抗网络模型,主要用于图像到图像的转换任务,具有较强的通用性,以下是其详细介绍:
核心思想
- CycleGAN使用两个生成器和两个判别器,目标是通过两个方向的图像生成,即从域X到域Y和从域Y到域X,学习两种不同域之间的映射关系,且不需要成对的标注数据.
- 生成器G负责将源域X中的图像转换为目标域Y中的图像,生成器F负责将目标域Y中的图像转换为源域X中的图像;判别器DX负责判别源域X中的图像是真实的还是生成的,判别器DY负责判别目标域Y中的图像是真实的还是生...