分批次处理可以通过将3000支股票划分成若干个小批次来实现,这样每次只处理一部分数据,减少内存压力和资源占用。你可以使用以下几种方法来实现:
1. 手动分批次:
你可以手动将股票列表分成几个较小的列表,然后分别为每个批次启动独立的进程进行处理。举个例子:
import numpy as np
from multiprocessing import Pool
# 假设你有一个包含3000支股票的列表
stocks = list(range(1, 3001))
# 假设你希望将其分成10个批次,每批次处理300支股票
batch_size = 300
batches = [stocks[i:i + batch_size] for i in range(0, len(stocks), batch_size)]
# 定义处理每批次的函数
def process_batch(batch):
# 这里执行你的 LSTM 模型预测逻辑
result = [] # 存储批次的预测结果
for stock in batch:
# 进行股票预测
result.append(stock)
return result
# 使用 multiprocessing Pool 来并行处理
if __name__ == '__main__':
with Pool(processes=4) as pool: # 设置进程数
results = pool.map(process_batch, batches)
# 结果是每个批次的处理结果
all_results = [item for sublist in results for item in sublist]
print(all_results)
在这个例子中,我们首先将3000支股票分成10个批次,每个批次300支股票。然后,使用 multiprocessing.Pool
来并行处理这些批次,每个进程处理一个批次。
2. 自动批次化:
如果你希望自动化批次划分,并且能够灵活调整批次大小,可以写一个动态批次化的函数:
import numpy as np
from multiprocessing import Pool
def split_into_batches(stocks, batch_size):
""" 将股票列表分割成多个小批次 """
return [stocks[i:i + batch_size] for i in range(0, len(stocks), batch_size)]
def process_batch(batch):
""" 处理每个批次的 LSTM 预测 """
results = []
for stock in batch:
# 模型预测
results.append(stock) # 这里替换成你的 LSTM 预测逻辑
return results
def parallel_processing(stocks, batch_size, num_processes):
""" 使用并行处理分批次预测 """
batches = split_into_batches(stocks, batch_size)
with Pool(processes=num_processes) as pool:
results = pool.map(process_batch, batches)
# 合并所有批次的结果
all_results = [item for sublist in results for item in sublist]
return all_results
if __name__ == '__main__':
stocks = list(range(1, 3001)) # 假设3000支股票
batch_size = 300 # 每批次300支股票
num_processes = 4 # 并行进程数
# 执行并行处理
all_results = parallel_processing(stocks, batch_size, num_processes)
print(all_results)
3. 动态调整批次大小:
如果你想动态调整批次大小(例如,某些批次由于计算量较大,可以适当缩小批次大小),可以根据资源使用情况(如内存、CPU等)来调整。
import psutil
import time
def get_available_memory():
""" 获取系统当前可用内存 """
return psutil.virtual_memory().available
def process_batch(batch):
""" 处理每个批次的 LSTM 预测 """
results = []
for stock in batch:
# 模型预测
results.append(stock) # 这里替换成你的 LSTM 预测逻辑
return results
def dynamic_batching(stocks, batch_size, max_memory_usage, num_processes):
""" 动态调整批次大小,避免内存占用过高 """
batches = split_into_batches(stocks, batch_size)
all_results = []
with Pool(processes=num_processes) as pool:
for batch in batches:
available_memory = get_available_memory()
# 如果内存不足,缩小批次大小
if available_memory < max_memory_usage:
batch_size = max(100, batch_size // 2) # 动态调整批次大小
# 处理当前批次
results = pool.map(process_batch, [batch])
all_results.extend(results)
time.sleep(1) # 可适当调整以避免频繁检查
return all_results
4. 控制并行度:
如果并行数过高,系统资源可能会过载。你可以根据实际资源限制(比如 CPU 核数、内存等)来控制并行的进程数。
import os
from multiprocessing import Pool
def process_batch(batch):
""" 处理每个批次的 LSTM 预测 """
results = []
for stock in batch:
results.append(stock) # 这里替换成你的 LSTM 预测逻辑
return results
if __name__ == '__main__':
stocks = list(range(1, 3001)) # 3000支股票
batch_size = 300
num_processes = os.cpu_count() # 自动获取 CPU 核数来设置并行进程数
batches = [stocks[i:i + batch_size] for i in range(0, len(stocks), batch_size)]
with Pool(processes=num_processes) as pool:
results = pool.map(process_batch, batches)
all_results = [item for sublist in results for item in sublist]
print(all_results)
总结
你可以选择手动分批次或根据系统资源进行动态调整。分批次处理可以帮助你控制每次计算的内存消耗,避免内存溢出或计算过慢。并行化处理的数量可以根据你机器的 CPU 核数和内存大小来调整。