分类目录归档:时间序列预测

TSLib-面向深度学习研究者的时间序列分析工具库


Time Series Library (TSLib) 仓库介绍

TSLib 是由清华大学机器学习实验室(THUML)开源的面向深度学习研究者的时间序列分析工具库,核心聚焦于深度时间序列模型的评测与研发,是一个功能全面、易扩展的代码基准库。

核心定位

提供整洁、统一的代码框架,支持长短期预测、缺失值插补、异常检测、分类五大主流时间序列任务,同时适配大型时间序列模型(LTSM)的零样本预测评估,既可以复现SOTA模型,也能快速开发自定义模型。

核心特性

1. 丰富的模型支持

覆盖数十种主流/前沿时间序列模型,且持续更新: - 经典基础模型:Transformer、Informer、Auto...

Read more

TSLib-开源的深度学习库


Time Series Library (TSLib) 仓库介绍

TSLib 是一个开源的深度学习库,专为深度学习研究人员设计,尤其适用于深度时间序列分析。该库提供了简洁的代码基础,用于评估先进的深度时间序列模型或开发新模型,涵盖了五个主流任务:长期和短期预测、缺失值填补、异常检测和分类

主要特点

  1. 多任务支持:涵盖长期预测、短期预测、缺失值填补、异常检测和分类五大时间序列任务
  2. 丰富模型库:包含大量当前主流的时间序列模型,如TimeXer、TimeMixer、iTransformer、PatchTST、TimesNet等
  3. 支持大型时间序列模型(LTSMs):新增零样本预测功能,支持Ch...

Read more

PyFlux -概率时间序列分析


PyFlux 库功能详解

PyFlux 是一个专为 概率时间序列分析 设计的 Python 库,它将现代统计模型与贝叶斯推断框架相结合,提供了从数据预处理到模型诊断的完整工作流程。以下是该库所有核心功能的系统性介绍。


一、核心设计理念

PyFlux 的设计基于三个支柱: - 贝叶斯优先:默认使用 MCMC 等贝叶斯方法进行参数估计,提供完整的后验分布而非点估计 - 状态空间统一:多数模型可表示为状态空间形式,统一处理观测方程和状态方程 - 模块化架构:模型构建、参数估计、预测和诊断相互独立,可灵活组合


二、支持的模型体系(Model Families)

1. ARIMA 族模型

pf...

Read more

GARCH模型介绍


GARCH模型介绍

在金融时间序列分析中,“波动”是一个核心概念,它直接关系到风险评估、资产定价和投资决策。传统的统计模型通常假设数据的方差恒定(即“同方差”),但金融数据(如股票收益率、汇率波动)往往表现出“波动聚类”特征——大的波动之后往往跟随大的波动,小的波动之后往往跟随小的波动,这种方差随时间变化的特性被称为“异方差”。GARCH模型正是为捕捉这种动态波动特性而设计的经典工具。

一、GARCH模型的背景与发展

GARCH模型的全称是广义自回归条件异方差模型(Generalized Autoregressive Conditional Heteroskedasticity Mode...

Read more

时间序列预测-数据量大小-预测方式选择


在实际深度学习时序预测中,“数据量小/大”没有绝对标准,但有一些经验参考:

数据量小:

通常指样本数低于几千条(如<2000~3000),或者训练集天数少于1年(A股5分钟数据一天48条,1年约1万条)。 特征维度多时,样本数/特征数比值低于10~20,也算偏小。 小数据下,复杂模型(如一次性多步Seq2Seq)容易过拟合,递归单步预测更稳健。 数据量大:

样本数达到几万条以上(如>10000~20000),或训练集覆盖2年以上。 特征维度不多时,样本数/特征数比值高于50~100。 大数据下,一次性多步预测模型能学到更复杂的时序关系,效果更好。 预测步数(序列长度):

短步...

Read more

时间序列预测-确定性过程建模


在时间序列预测中,确定性过程建模是指识别和建模时间序列中那些非随机、可预测、有规律可循的组成部分。这些成分通常由已知的、固定的模式驱动,而不是由随机波动主导。

理解时间序列的典型分解有助于理解确定性过程:

  1. 趋势: 序列长期表现出的上升、下降或水平移动。例如,人口增长、技术普及带来的销量上升。
  2. 季节性: 在固定周期(如一天、一周、一月、一年)内重复出现的模式。例如,每日用电高峰、季节性商品销售、节假日效应。
  3. 周期性: 在非固定周期(通常长于季节性周期)内出现的波动,通常与经济周期相关。其频率和幅度不如季节性稳定。例如,房地产周期、大宗商品价格周期。
  4. 特殊事件/干预: 已知的一次性或短期事...

Read more

时间序列预测模型-列表


以下是常见的时间序列预测模型的分类梳理,以Markdown表格形式呈现:

时间序列预测模型分类表

类别 模型名称 核心描述 适用场景
传统统计模型 AR (自回归模型) 用历史值的线性组合预测未来值 平稳序列,短期预测
MA (移动平均模型) 用历史白噪声的线性组合预测未来 平稳序列,噪声处理
ARMA AR与MA的组合模型 平稳时间序列
ARIMA 加入差分处理的ARMA扩展 非平稳序列(需差分平稳化)
SARIMA 加入季节性差分的ARIMA 具有季节性的非平稳序列
ETS (指数平滑) 加权平均历史观测值(含趋势/季节分量) 趋势和季节性...

Read more

PI-LSTM-时间序列预测模型-03010-V01


PI-LSTM:让时间序列预测更“靠谱”的利器

在金融、气象、交通等领域,精准预测未来趋势至关重要。传统LSTM模型虽擅长捕捉序列中的复杂模式,但它通常只给出一个“点预测”——即一个确定性的未来值。现实中,预测总伴随不确定性。PI-LSTM(Prediction Interval LSTM) 应运而生,它的核心目标不仅是预测“最可能的值”,还要清晰告诉使用者预测结果可能的波动范围有多宽——这就是预测区间(Prediction Interval, PI)。

为什么需要预测区间(PI)?

想象预测明天股市收盘价: * 普通LSTM模型告诉你:“预测明天收盘是3050点。” * PI-...

Read more

TimesNet-时间序列预测模型-03009-V01


TimesNet:时间序列预测的“时空捕手”

在金融、气象、工业监控等领域,时间序列预测是核心任务。传统模型如ARIMA、LSTM常面临挑战:难以同时捕捉复杂的时间变化模式(如突变、周期性)。2023年,清华团队提出的TimesNet模型突破这一瓶颈,成为时间序列分析的新星。它无需复杂数学公式,就能带我们理解其精妙之处。

一、 传统方法的瓶颈:时间维度的“近视眼”

想象医生查看心电图: - 局部视角(传统CNN):只能看到当前心跳的波形,忽略心跳间的规律。 - 长程视角(传统RNN):能记住过去多次心跳,但细节易模糊。

更关键的是,真实时间序列像交织的绳索: - 变化周期多样:日气温(2...

Read more

ARIMA-时间序列预测模型-03008-V01


ARIMA时间序列预测模型介绍

ARIMA(Autoregressive Integrated Moving Average),即自回归综合移动平均模型,是时间序列预测领域最经典、应用最广泛的工具之一。它擅长捕捉数据中的趋势、季节性和内在依赖关系,用于预测未来的数据点。

核心思想:拆解时间序列

ARIMA模型认为,一个时间序列的值主要受三方面因素影响:

  1. 历史值的影响 (AR - 自回归): 当前的值与它过去几个时刻的值存在线性关系。例如,昨天的气温很可能对今天的气温有直接影响。
  2. 历史预测误差的影响 (MA - 移动平均): 当前的预测误差与过去几个时刻的预测误差存在线性关系。这反映了模...

Read more