LSTM(Long Short-Term Memory)是一种特殊的循环神经网络(RNN)架构,它在处理和记忆序列数据方面表现出色,尤其是对于那些时间跨度较长的重要信息。LSTM被设计用来解决标准RNN在处理长序列数据时遇到的梯度消失或梯度爆炸问题。
LSTM的关键特点:
- 门控机制:
-
LSTM引入了三个门控机制:遗忘门(forget gate)、输入门(input gate)和输出门(output gate),这些门控可以控制信息的流动,从而解决长序列依赖问题。
-
单元状态(Cell State):
-
除了隐藏状态(hidden state)之外,LSTM还有一个单元状态(cel...