分类目录归档:人工智能

卷积神经网络CNN对缩放和旋转的敏感性


  1. 理解卷积神经网络(CNN)对缩放和旋转的敏感性
  2. 卷积神经网络的工作原理基础:CNN主要是通过卷积层中的卷积核在输入数据(如图像)上滑动来提取特征。卷积核学习到的是特定局部区域的特征模式,这些模式在一定程度上与输入数据的空间布局相关。例如,在图像中,卷积核可能学习到边缘、角落等特征,并且这些特征的位置和相对大小在卷积核的学习过程中是有一定固定模式的。
  3. 缩放问题:当图像发生缩放时,CNN的性能会受到影响。假设一个卷积核学习到了某个物体在特定大小下的特征模式,比如一张正常大小的人脸图像中眼睛的形状特征。如果图像被放大,眼睛的大小相对于卷积核所学习的模式发生了变化,原来的卷积核可能无法很好地匹...

Read more

浅层模型-


  1. 定义与分类
  2. 浅层模型是指在机器学习和数据挖掘领域中,那些结构相对简单、不具备很多隐藏层(如神经网络中的隐藏层或者模型复杂层次结构)的模型。
  3. 线性模型
    • 线性回归(Linear Regression)是典型的浅层模型。它假设因变量和自变量之间存在线性关系,通过最小二乘法等方法拟合一条直线(在多元情况下是一个超平面)来预测目标变量。例如,在预测房屋价格时,根据房屋面积、房间数量等自变量构建线性回归模型,找到最佳的权重系数,使得预测价格与实际价格的误差平方和最小。
    • 逻辑回归(Logistic Regression)主要用于二分类问题。它将线性函数的输出通过Sigmoid函数映射到((0,1)...

Read more

感知机-


感知机(Perceptron)作为神经网络的基础单元,以下将从定义、原理、学习算法、实现示例等多个方面对其进行深入剖析:

定义与基本结构

  • 定义:感知机是一种二分类的线性分类模型,它是神经网络的基本组成单元,由输入层、输出层组成,有时会带有一个偏置单元。
  • 基本结构:输入层接收外部输入信号,每个输入信号对应一个权重,表示该输入对输出的影响程度。偏置单元用于调整神经元的激活阈值,在计算时与权重类似。输出层根据输入信号的加权和与偏置的结果,通过激活函数产生最终的输出。

工作原理

  • 前向传播:在工作时,感知机将输入数据与相应的权重相乘,然后将所有乘积相加,再加上偏置项,得到一个净输入值。将净输...

Read more

全连接层-


在深度学习中,Dense Layer(全连接层)是一种非常常见且重要的神经网络层,以下是对其的详细介绍:

定义与基本原理

  • 定义:Dense Layer也叫全连接层,是一种在神经网络中,当前层的每个神经元与前一层的所有神经元都相互连接的层,其神经元之间的连接是全连接的方式,即每个输入神经元都与每个输出神经元相连。
  • 基本原理:在全连接层中,输入数据被看作是一个一维向量,每个神经元对输入数据进行加权求和,并加上一个偏置项,然后通过一个激活函数得到输出。

数学表达式

  • 假设全连接层的输入为$x$,是一个维度为$n$的向量,权重矩阵为$W$,其形状为$(m, n)$,其中$m$是该层神经元的数...

Read more

交叉熵-


  1. 定义与概念
  2. 交叉熵(Cross - Entropy)是信息论中的一个概念,用于衡量两个概率分布之间的差异程度。给定两个概率分布(p)(真实分布)和(q)(预测分布),它们的交叉熵(H(p,q)=-\sum_{i}p(i)\log q(i))。这里(i)遍历所有可能的事件,并且假设概率分布是离散的;如果是连续分布,则用积分形式表示。例如,在一个简单的二分类问题中,假设真实标签的概率分布(p = [1,0])(表示正类概率为(1),负类概率为(0)),预测概率分布(q = [0.8,0.2]),那么交叉熵(H(p,q)=-(1\times\log0.8 + 0\times\log0.2)...

Read more

Softmax回归模型-


  1. 定义与基本原理
  2. 定义:Softmax回归模型是一种用于多分类问题的概率模型。它将一个包含多个数值的输入向量转换为一个概率分布向量,这个概率分布向量表示输入数据属于各个类别可能性的大小。例如,在一个图像分类问题中,输入是图像的特征向量,Softmax回归模型会输出这个图像属于每个可能类别(如猫、狗、兔子等)的概率。
  3. 基本原理:假设输入向量为(\boldsymbol{x}=(x_1,x_2,\cdots,x_n)),对于一个有(k)个类别的多分类问题,Softmax回归模型首先计算每个类别的得分(z_j),一般通过线性变换(z_j = \boldsymbol{w}j^T\boldsymb...

Read more

学习率-


  1. 定义
  2. 学习率(Learning Rate)是机器学习和深度学习中优化算法的一个重要超参数。它决定了在每次迭代过程中,模型参数朝着损失函数梯度下降方向更新的步长大小。简单来说,学习率控制着模型学习的速度。例如,在梯度下降算法中,对于一个参数(\theta),其更新公式为(\theta = \theta - \alpha \times \nabla L(\theta)),其中(\alpha)就是学习率,(\nabla L(\theta))是损失函数(L)关于(\theta)的梯度。

  3. 作用和影响

  4. 学习速度:如果学习率设置得较大,模型参数更新的步长就大,模型学习的速度会加快。例如,在训...

Read more

显示解-


  1. 定义
  2. 在数学和工程等领域,“显示解”(也称为显式解)是指能够用明确的公式表示出未知量的解。与隐式解相对,隐式解是通过一个方程(组)来隐含地定义未知量,而没有将未知量直接解出来。例如,对于一元二次方程(ax^2 + bx + c = 0)((a\neq0)),其显示解为(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}),这个公式直接给出了(x)的取值,这就是显示解。

  3. 特点

  4. 直观性:显示解的最大优点是直观易懂。它直接给出了未知量与已知量之间的关系,人们可以很容易地代入已知参数的值来计算未知量。例如,在上述一元二次方程的显示解中,只要知道(a)、(b)、...

Read more

训练损失-


  1. 定义
  2. 训练损失(Training Loss)是在模型训练过程中,用于衡量模型预测结果与训练数据真实标签之间差异的指标。它是基于训练数据集计算得到的损失函数值。例如,在一个神经网络用于图像分类的训练过程中,对于每一批(batch)训练图像,将其输入网络得到预测类别概率,再与图像的真实类别标签通过损失函数(如交叉熵损失)进行计算,得到的损失值就是训练损失。

  3. 计算方式

  4. 首先要确定损失函数。不同的任务(如回归、分类等)有不同的损失函数。对于回归任务,常见的是平方损失(MSE)函数,计算方式为(L = \frac{1}{n}\sum_{i = 1}^{n}(\hat{y}_i - y_...

Read more

平方损失-


  1. 定义
  2. 平方损失(Squared Loss),也称为均方误差(Mean Squared Error,MSE),是一种用于衡量预测值与真实值之间差异的损失函数。给定一组预测值(\hat{y}i)和对应的真实值(y_i)((i = 1,2,\cdots,n)),平方损失函数的计算公式为(L(\hat{y},y)=\frac{1}{n}\sum^{n}(\hat{y}_i - y_i)^2)。例如,在一个简单的线性回归问题中,我们有真实值(y = [1,2,3]),预测值(\hat{y}=[1.2,1.8,3.1]),则平方损失(L=\frac{1}{3}[(1.2 - 1)^2+(1.8 -...

Read more